

Unreal Networking Guide
Created by Zach Metcalf
zachmetcalf@gmail.com

Note: This guide is compiled from Unreal Documentation, Unreal Example Content, Shooter
Game Demo, and experiences while porting the ITP380 UnrealShmup Game to Multiplayer.

There are several great tutorials on Unreal Networking for Blueprints, so this guide will bridge
the gap and provide more C++ examples for developers.

There may be features pertinent to Multiplayer Game Development, such as Match-Making,
Network Protocols, etc., that are not covered, but this serves as the base requirements for
creating network-ready multiplayer gameplay code.

Contents
Part 0—Unreal Networking Model ... 1

Part 1—Property Replication .. 3

Part 2—Actor Replication ... 6

Part 3—RPC Introduction, More Syncing .. 8

Part 4—Custom Object Replication via RPCs .. 10

Part 5—Complex RPC Relationships and Examples .. 12

Unreal Networking Guide

1

Part 0—Unreal Networking Model

Before we get started, let’s look at the Unreal Networking Paradigm—The Client-Server Model:

In this model, Clients send their data to the Server, the Server processes the data, and forwards
this information and any results to all other Clients. Whenever a new Client wants to join, they
communicate only with the Server, who then replicates this new player to all other players.

Now, There are many networking models—Peer-to-Peer, Modified Peer-to-Peer (Master Client
or Rendezvous Server), Client-Server, etc. So I want to give some justifications for why Unreal
uses Client-Server model and why this will be helpful for a large-scale multiplayer game:

Network Requirements—A peer to peer game requires n2 bandwidth, because each client
needs to communicate with each and every other client. However, Client-Server only requires
2n bandwidth since Clients only need to upload their information to the server. With each client
only communicating to the Server, each client requires less upstream bandwidth.

Gameplay Logic—The Server, both physically and responsibility-wise, serves as a central host
for all logic. Thus, we can choose to optimize client-side code by doing processing on the server
only. For instance, only the Server needs to process whether not a player has taken damage.
Once processed, it can simply transmit the results. By moving code to the server, we decrease
run-time calculations on the client-side. It also helps prevent Clients from cheating!

Graphics Processing—One of Unreal’s more powerful features is the option to use a dedicated
server. A dedicated server is a server that simulates much of the game world and other logic,

Unreal Networking Guide

2

except it does no graphics. Thus, by putting more computations and mathematical simulations
server-side, the clients only need to focus on sending input data to the server and processing
the corresponding graphics of the results (this is known as the Dumb-Client model).

With less processing required on the client, less upstream bandwidth
needed client-side, and the ability to adapt code to be network
optimized and prevent cheating, Client-Server models are more suited
to large-scale multiplayer games. One thing to remember though. The
Server is King (or Queen), so we’ll always need to keep this in mind.

Network Code within this guide comes from a Multiplayer version of
the Unreal SHMUP for ITP380. I will be going through most of that
code, but if there’s something I’ve missed, I can provide any needed source code.

Unreal Networking Guide

3

Part 1—Property Replication

First, let’s enable networking! In UnrealShmup.h:

…

#include "Engine.h"
#include "UnrealNetwork.h"

…

That’s it! We’re done. Just kidding…

Let’s start with the easiest: syncing simple properties to clients. A good example for when this
would be required is Health. Property replication is simple in theory: Every time a variable
changes, we want our network to notify all clients of the change and update the variable. In this
case, if a player gets shot, everyone should see their health decrease.

When you register a variable to stream like this, it’s important that these variables Only be
Modified by the Server and replicated from the Server. In this case, Property Replication is a
one-way from Server to Client, so if we want to change a variable, do it server-side. So let’s
replicate the Unreal SHMUP Player’s Health! In UnrealShmupCharacter.h:

class AUnrealShmupCharacter : public ACharacter
{

…
 // Health
 UPROPERTY(Replicated, EditAnywhere, Category = Player)
 float Health;
 // IsDead
 UPROPERTY(Replicated, BlueprintReadOnly, Category = Player)
 bool IsDead;

…

}

I have chosen to register both Health and IsDead Properties for this game. The procedure for
other properties is identical, so whatever variable you want to replicate will follow this method.

Anyway, by adding the UPROPERTY Param Replicated we have told Unreal that we want these
variables to be constantly replicated from Server to Client. Now, means 2 things. 1) We need to
implement this class for variable syncing, and 2) We have inherently moved this variable to the
server’s representation of our character only. We’ll walk through what each means.

Enabling Syncing—If you try to compile right now, likely your build will break. To fix this, we
need to add a function to UnrealShmupCharacter.cpp. There is no need to declare the function
prototype in the header file, just copy and paste the code like this:

Unreal Networking Guide

4

// [Server to AllClient] Multiplayer Replication
void AUnrealShmupCharacter::GetLifetimeReplicatedProps(TArray<FLifetimeProperty>&
OutLifetimeProps) const
{
 Super::GetLifetimeReplicatedProps(OutLifetimeProps);

 DOREPLIFETIME(AUnrealShmupCharacter, Health);
 DOREPLIFETIME(AUnrealShmupCharacter, IsDead);
}

And in the constructor (I’ll explain these parts later):

AUnrealShmupCharacter::AUnrealShmupCharacter(const class FObjectInitializer& PCIP) :
Super(PCIP)
{

…
 // Replication
 bReplicates = true;
 bReplicateMovement = true;
 bReplicateInstigator = true;
 bNetUseOwnerRelevancy = true;
}

And that’s it! The DOREPLIFETIME macro will set everything up so that when Health changes on
the server, it makes all Clients call mClientHealth = mServerHealth.

For the most part, this is good enough. However, if you are bandwidth crazy and want more
control, there are addition parameters you can provide that give you more control as to when a
variable replicates. For instance: COND_OwnerOnly will only send to the actor’s owner,
COND_SkipOwner will do the opposite. There are several more available at
https://www.unrealengine.com/blog/network-tips-and-tricks, and I will be creating a followup
guide soon about these further optimizations.

And if you’re converting your SHMUP Game to multiplayer, the next step would be to do the
same thing for the ADwarfCharacter::Health variable.

Commenting Style:

// [Server to AllClient] Multiplayer Replication to AllClients

This style was used to implement Unreal’s ShooterGame sample and we will continue to use it
within this guide. Essentially, the […] will encapsulate who is physically calling and what Server-
Client relationship is within code.

As code bases get bigger, the ties between sections of code grow more dependent on the
networking relationship. With these complex relationships, documentation, commenting, and
code cleanliness is crucial! Before writing a single line of code, it might be good to go through
the process of visualizing the Client-Server relationships via a Flow Chart.

https://www.unrealengine.com/blog/network-tips-and-tricks

Unreal Networking Guide

5

Common example: Rocket Launcher

Client 1:
Shoots
Rocket

Server:
Reports No

Direct
Collision

All Clients:
Simulate
Particle
Effects

Server:
Process

Explosion
Radius

Collision,
Damage
Player 2

Server:
Update

and
Replicate
Health,
Process
Player 2
Death

All Clients:
Simulate
Player 2
Death

Client 2:
Respawn

Unreal Networking Guide

6

Part 2—Actor Replication

Now that we’ve decided to replicate, let’s make sure that our visible objects will properly
replicate across a network. This next section will refer to anything spawned that one or more
clients will have a relationship with. In the SHMUP game, this will be: AUnrealShmupCharacter,
AAssaultWeapon, and ADwarfCharacter. We will add this code to their constructors:

AAssaultWeapon::AAssaultWeapon(const class FObjectInitializer & PCIP) : Super(PCIP)
{

…
 // Replication
 bReplicates = true;
 bReplicateInstigator = true;
 bNetUseOwnerRelevancy = true;
}

AUnrealShmupCharacter::AUnrealShmupCharacter(const class FObjectInitializer & PCIP) :
Super(PCIP)
{

…
 // Replication
 bReplicates = true;
 bReplicateMovement = true;
 bReplicateInstigator = true;
 bNetUseOwnerRelevancy = true;
}

ADwarfCharacter::ADwarfCharacter(const class FObjectInitializer & PCIP) : Super(PCIP)
{

…
 // Replication
 bReplicates = true;
 bReplicateMovement = true;
 bReplicateInstigator = true;
}

Now, let’s discuss these 4 properties:

bReplicates—This property is actually required for the variable streaming that we covered in
the last section. If there is data to be synced, we enable this bool.
bReplicateMovement—This property will only be relevant to actors like the player or dwarf. For
instance, the AddMovementInput() and MoveToActor() functions are already network-ready.
So once we enable this and move our player, this will stream player movement correctly.
bReplicateInstigator—This property syncs the Ownership of an object. This is important for 2
reasons: 1) it lets the server know who owns the object in case it’s trying to call TakeDamage()
or a similar server-side function. 2) it enables us to write code within the class that is Server-
specific and Client-specific.
bNetUseOwnerRelevancy (Optional)—Allows us to stream object with the priority of parent.

Unreal Networking Guide

7

So, bReplicates is required for variable streaming, bReplicateMovement helps with movement,
bNetUseOwnerRelevancy is for update frequencies. Let’s demystify bReplicateInstigator and
discuss Network Ownership and code strategies.

Now that we’ve enabled bReplicateInstigator, we can separate Server and Client code. In
UnrealShmupCharacter.h, we override the following functions and place these in
UnrealShmupCharacter.cpp. You may notice these functions are changed slightly from the
ITP380 SHMUP Game. We needed to move some code around for networking readiness. If
you’re familiar with Unity, this function corresponds to Start(). BeginPlay() is essentially the first
called Tick() update.

// BeginPlay Override
void AUnrealShmupCharacter::BeginPlay()
{
 Super::BeginPlay();

 // [Server]
 if (Role == ROLE_Authority)
 {

SpawnWeapon();
 }
}

Looking at the familiar commenting style, we can see that the Role variable is how we will
determine whether or not code should be run on a client or a server. The ROLE_Authority
corresponds to an enum within Unreal’s Engine (it’s the highest value of 4 enum values). There
are a few different options here, but this is a quick summary:

If (Role == ROLE_Authority), you’re the server.
If (Role < ROLE_Authority), you’re a client.

So what does this mean for us? Well, if we look at this again, we see that only the Server will
run the code to spawn the weapon. Here is another example:

// PlayerTick Override
void AUnrealShmupPlayerController::PlayerTick(float DeltaTime)
{
 Super::PlayerTick(DeltaTime);

 // [Client] Update Rotation
 if (Role < ROLE_Authority)
 {
 UpdateMouseLook();
 }
}

Unreal Networking Guide

8

Now we have modified the player Tick() function so only clients will do the mouse
looking/rotating. Once we learn about RPCs, we will go into more in depth examples. But for
now, we have learned how to separate code.

Part 3—RPC Introduction, More Syncing

So we have the player movement synced up and some variables like health streaming. But this
is not enough. For instance, the first bug I discovered was that the bReplicateMovement does
not replicate rotation! So to fix this, we will discuss RPCs and more strategies on how to sync
objects. Let’s add our first RPC to UnrealShmupPlayerController.h:

class AUnrealShmupPlayerController : public APlayerController
{
 …
 // [Client] Use Mouse to Rotate Player View
 void UpdateMouseLook();

 // [Server] SetRotation
 UFUNCTION(Reliable, Server, WithValidation)
 void SyncRotation(FRotator Rotation);

…
}

Let’s discuss some of the UFUNCTION Parameters that we just added.
Reliable or Unreliable—Unreliable says that we’re all right dropping this packet’s information
for a few frames if we have a slow connection. Reliable says that we want it guaranteed to get
there, however long that takes. In this case, I chose Reliable because my weapon hit logic is
based on the player’s rotation. But this decision should be made for each variable.

Server, Client, or Multicast—This one gets tricky. Server RPCs can be called from a client or the
server but only within classes where bReplicateInstigator=true. These functions are then run by
the server only. Client RPCs are called only for the specific client who owns the object we are
working on (again, we need bReplicateInstigator=true). Multicast RPCs are the most powerful.
First, the Server must call a Multicast Function and run the code directly on the server. Then, it
forwards this code to all Clients, who then run the functions on all clients. Whenever we need to
simulate graphics after server processing. Multicast RPCs are our best friends.

WithValidation—This parameter (required for all Server functions, optional otherwise) allows
us to have a callback function that gets called whenever someone receives the data. A good
example for this would be, once a Client gets the weapon fire validated, we play a particle
effect explosion just after. The other option here is to leave the parameter blank.

More info on these parameters is available here:
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/Networking/1_5/index.
html, https://wiki.unrealengine.com/Networking/Replication

https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/Networking/1_5/index.html
https://docs.unrealengine.com/latest/INT/Resources/ContentExamples/Networking/1_5/index.html
https://wiki.unrealengine.com/Networking/Replication

Unreal Networking Guide

9

Back to our examples: In the UpdateMouseLook() that is only processed Client-side, we are
going to add a function call and declare our new RPC functions right below it.

// [Client] Use Mouse to Rotate Player View
void AUnrealShmupPlayerController::UpdateMouseLook()
{
 APawn* const Pawn = GetPawn();

…
 // [Client]
 Pawn->SetActorRotation(fRotatorToImpact);
 // [Server]
 if (Role < ROLE_Authority)
 {
 SyncRotation(fRotatorToImpact);
 }
}

// [Server] SyncRotation
bool AUnrealShmupPlayerController::SyncRotation_Validate(FRotator Rotation)
{

return true;
}
void AUnrealShmupPlayerController::SyncRotation_Implementation(FRotator Rotation)
{
 APawn* const Pawn = GetPawn();
 if (Pawn)
 {
 Pawn->SetActorRotation(Rotation);
 }
}

Now, we will walk through these functions: In UpdateMouseLook(), the Client sets its own
rotation (but the Server and All Other clients can’t see the changes). Thus, the client makes sure
it’s not the server, and then calls an RPC for the server to call. The SyncRotation_Validate() is
the extra function we are required to implement whenever we use the WithValidation
parameter. It returns true, and if we wanted to process something on validation, we do it here.
The SyncRotation_Implementation is the RPC function itself. And if you’ve done some
Blueprint/C++ tutorials, the _Implementation and _Validate is Unreal doing its RPC magic.

The thing that’s worth noting is in SyncRotation_Implementation() and UpdateMouseLook() we
first fetch the Pawn via GetPawn() of this class before setting the rotation. This is, in fact, the
same pawn, just from different perspectives, i.e., it is the same object because we set up our
Character as bReplicates=true, but when the Server updates its version, other clients are able to
see it. In other words, All Changes Sync From Server to Clients.

This is the power of RPCs. If the client needs to update other clients, it must use this technique,
and update via the server.

Unreal Networking Guide

10

Part 4—Custom Object Replication via RPCs

Before we go further into RPCs and Client-Server relationships, we should discuss how we get
full classes to sync. In this example, we’re going to return to spawning the character’s weapon:

// PostInitializeComponents Override
void AUnrealShmupCharacter::PostInitializeComponents()
{
 Super::PostInitializeComponents();

 // [Server]
 if (Role == ROLE_Authority)
 {
 SpawnWeapon();
 }
}

Here, we spawned the weapon on the Server, but we still need to set it up so that the particular
Client Owns the weapon. So let’s go back to property syncing in UnrealShmupCharacter.h:

class AUnrealShmupCharacter : public ACharacter
{

…
 // Health
 UPROPERTY(Replicated, EditAnywhere, Category = Player)
 float Health;
 // IsDead
 UPROPERTY(Replicated, BlueprintReadOnly, Category = Player)
 bool IsDead;

 // Replicated Weapon
 UFUNCTION() void OnRep_MyWeapon();
 UPROPERTY(Transient, ReplicatedUsing = OnRep_MyWeapon)
 class AWeapon* MyWeapon;
 …
}

The new UPROPERTY ReplicatedUsing = OnRep_MyWeapon tells Unreal that I actually want to
create my own custom object syncing function. With all of the ownership issues we could have,
it’s not enough just to say “MyClientWeapon = MyServerWeapon” when syncing.

And this new UFUNCTION void OnRep_MyWeapon() has nothing special, I just declared it here
to show that it’s only job is to sync the forward-declared class AWeapon* MyWeapon. Now
back to UnrealShmupCharacter.h:

// [Server to AllClient] Multiplayer Replication
void AUnrealShmupCharacter::GetLifetimeReplicatedProps(TArray<FLifetimeProperty>&
OutLifetimeProps) const
{
 Super::GetLifetimeReplicatedProps(OutLifetimeProps);

 DOREPLIFETIME(AUnrealShmupCharacter, Health);

Unreal Networking Guide

11

 DOREPLIFETIME(AUnrealShmupCharacter, IsDead);
 DOREPLIFETIME(AUnrealShmupCharacter, MyWeapon /* OnRep_MyWeapon */);
}
// Replicated Weapon
void AUnrealShmupCharacter::OnRep_MyWeapon()
{
 EquipAndSyncWeapon();
}

// [Server] [AllClients] EquipAndSyncWeapon
void AUnrealShmupCharacter::EquipAndSyncWeapon()
{
 if (MyWeapon)
 {
 // Equip PreSpawned Weapon
 // This is attached to "WeaponPoint" Defined in Skeleton
 MyWeapon->WeaponMesh->SnapTo(Mesh, TEXT("WeaponPoint"));
 MyWeapon->SetActorRotation(FRotator(0.0f, -90.0f, 0.0f));
 MyWeapon->SetOwningPawn(this);
 }
}

Now we have created our own custom replication function OnRep_MyWeapon that is called
whenever syncing occurs, giving us complete control across a network (note: this is called
OnRep_Notify in blueprinting). But what was the point of doing this? The point is the function
that I bolded above. SetOwningPawn(). Here is AWeapon::SetOwningPawn(). This is crucial.

// [Server] [AllClients] SetOwner for RPC Calls
void AWeapon::SetOwningPawn(AUnrealShmupCharacter* NewOwner)
{
 if (MyPawn != NewOwner)
 {
 Instigator = NewOwner;
 MyPawn = NewOwner;
 // [Net Owner] for RPC Calls
 SetOwner(NewOwner);
 }
}

Even though we set bReplicateInstigator=true, if we want to sync an entire object, like a
weapon, these 2 lines of bolded code ensure that RPC network calls are done correctly.
Without this little function (which I recommend within all Base classes of replicate-able
objects), ownership/RPCs won’t always work like we want.

Why is this important? Well, because Unreal has always implemented Client-Server models,
some of their functions are built directly into the networking model. The best example is
TakeDamage(). After diving deep within the engine code, there is a line that Zeroes out all
Damage if (Role < ROLE_Authority). And if we don’t setup ownership/RPCs correctly, Unreal will
get confused and Zero out our damage. It won’t even return an error/exception. It will simply
just not work/not call the RPC, and it will cost many wasted hours trying to figure out why
nothing got called.

Unreal Networking Guide

12

Part 5—Complex RPC Relationships and Examples

All right, we’re almost done! I promise the rest of this guide is mostly code and not my lecturing
anymore. But thanks for sticking with it so far!

Dwarf Example—In the SHMUP Game, is there any control the player has over the dwarves?
Not really. Therefore, let’s move all spawning and processing of the dwarves to the Server!
Let’s start with SpawnManager.h and SpawnManager.cpp:

class UNREALSHMUP_API ASpawnManager : public AActor
{

…
 // [Server] Spawn NextDwarf
 UFUNCTION(Reliable, Server, WithValidation)
 void SpawnNextEnemy();

…
}

// Begin Play Override
void ASpawnManager::BeginPlay()
{
 Super::BeginPlay();

 // [Server]
 if (Role == ROLE_Authority)
 {
 GetWorldTimerManager().SetTimer(this, &ASpawnManager::SpawnNextEnemy,
MinSpawnTime, false);
 }
}

// [Server] Spawn NextDwarf
//UFUNCTION(Reliable, Server, WithValidation)
bool ASpawnManager::SpawnNextEnemy_Validate() { return true; }
void ASpawnManager::SpawnNextEnemy_Implementation()
{
 FActorSpawnParameters SpawnParams;
 SpawnParams.Owner = this;
 SpawnParams.Instigator = Instigator;
 …

 // Spawn Character
 UWorld* World = GetWorld();
 if (World)
 {
 ACharacter* Character = World->SpawnActor<ACharacter>(CharacterToSpawn,
Position, Rotation, SpawnParams);
 if (Character)
 {
 Character->SpawnDefaultController();
 }
 }

 // [Server] Next Spawn

Unreal Networking Guide

13

 float NextRandomSpawn = FMath::FRandRange(MinSpawnTime, MaxSpawnTime);
 GetWorldTimerManager().SetTimer(this, &ASpawnManager::SpawnNextEnemy,
NextRandomSpawn, false);
}

By catching that first call in BeginPlay() for the Server RPC, we have trapped SpawnManager so
that all function calls following will only occur Server-side. This, and with the Dwarves being
bReplicated=true, we moved the dwarf objects directly to the server. Now, they’ll look odd
since they won’t animate now, but let’s fix that. In DwarfCharacter.h and DwarfCharacter.cpp:

class UNREALSHMUP_API ADwarfCharacter : public AEnemyCharacter
{
 …
 // [Server] [AllClients] StartAttack
 UFUNCTION(Reliable, NetMulticast, WithValidation)
 void StartAttack();
 // [Server] [All Clients] StopAttack
 UFUNCTION(Reliable, NetMulticast, WithValidation)
 void StopAttack();
 // [Server] [All Clients] ProcessDeath
 UFUNCTION(Reliable, NetMulticast, WithValidation)
 void ProcessDeath();

…
}

// [Server] Take Damage Override
float ADwarfCharacter::TakeDamage(float Damage, struct FDamageEvent const& DamageEvent,
AController* EventInstigator, AActor* DamageCauser)
{
 float ActualDamage = Super::TakeDamage(Damage, DamageEvent, EventInstigator,
DamageCauser);
 if (ActualDamage > 0.0f)
 {
 Health -= ActualDamage;
 if (Health <= 0.0f)
 {
 // [Server] [AllClients]
 Health = 0.0f;
 bCanBeDamaged = false;
 StopAttack();
 ProcessDeath();
 }
 }
 return ActualDamage;
}

// [Server] [AllClients] Start Attack
//UFUNCTION(Reliable, NetMulticast, WithValidation)
bool ADwarfCharacter::StartAttack_Validate() { return true; }
void ADwarfCharacter::StartAttack_Implementation()
{
 // [Server] [AllClients] Play Attack Animation
 float AnimDuration = PlayAnimMontage(AttackAnim);

 // [Server]
 if (Role == ROLE_Authority)

Unreal Networking Guide

14

 {
 // Do Damage
 GetWorldTimerManager().SetTimer(this, &ADwarfCharacter::DamageActor,
AnimDuration - 0.10f, true);
 }
}

// [Server] [All Clients] Stop Attack
//UFUNCTION(Reliable, NetMulticast,WithValidation)
bool ADwarfCharacter::StopAttack_Validate() { return true; }
void ADwarfCharacter::StopAttack_Implementation()
{
 // [Server] [AllClients] Stop Attack Animation
 StopAnimMontage();

 // [Server]
 if (Role == ROLE_Authority)
 {
 // Stop Damage
 GetWorldTimerManager().ClearTimer(this, &ADwarfCharacter::DamageActor);
 }
}

// [Server] [All Clients] Process Death
//UFUNCTION(Reliable, NetMulticast, WithValidation)
bool ADwarfCharacter::ProcessDeath_Validate() { return true; }
void ADwarfCharacter::ProcessDeath_Implementation()
{
 // [Server] [AllClients] Death Animations
 GetWorldTimerManager().ClearAllTimersForObject(this);
 StopAnimMontage();
 float AnimDuration = PlayAnimMontage(DeathAnim);

 // [Server]
 if (Role == ROLE_Authority)
 {
 GetWorldTimerManager().SetTimer(this, &ADwarfCharacter::DestroySelf,
AnimDuration - 0.25f, false);
 Controller->UnPossess();
 }
}

This procedure is often how the interactions between Server and Client will go:

AssaultWeapon Example—This is just to give one final clear picture of RPC relationships, and to
show you that the RPC function calls of these classes will follow a very similar pattern every
time. In AssaultWeapon.h and AssaultWeapon.cpp:

Server: Do Processing and Call Multicast Function

All Clients: Do Animation/Effects

Server: Continue Processing

Unreal Networking Guide

15

class UNREALSHMUP_API AAssaultWeapon : public AWeapon
{

…
 // StartFire Override
 void StartFire() override;
 // StopFire Override
 void StopFire() override;

 // [Server] ProcessWeaponStart
 UFUNCTION(Reliable, Server, WithValidation)
 void ProcessWeaponStart();
 // [Server] ProcessWeaponStop
 UFUNCTION(Reliable, Server, WithValidation)
 void ProcessWeaponStop();

 // [Server] WeaponTrace
 void WeaponTrace();

 // [AllClients] StartHitEffects
 UFUNCTION(Unreliable, NetMulticast)
 void StartHitEffects(FHitResult Hit);
 …
}

// StartFire Override
void AAssaultWeapon::StartFire()
{
 Super::StartFire();

 // [Client] Hand Off to [Server]
 if (Role < ROLE_Authority)
 {
 ProcessWeaponStart();
 }
}

// StopFire Override
void AAssaultWeapon::StopFire()
{
 Super::StopFire();

 // [Client] Hand Off to [Server]
 if (Role < ROLE_Authority)
 {
 ProcessWeaponStop();
 }
}

// [Server] ProcessWeaponStart
//UFUNCTION(Reliable, Server, WithValidation)
bool AAssaultWeapon::ProcessWeaponStart_Validate() { return true; }
void AAssaultWeapon::ProcessWeaponStart_Implementation()
{
 // [AllClients]
 StartWeaponEffects();

Unreal Networking Guide

16

 // [Server] Start WeaponTrace Timer
 GetWorldTimerManager().SetTimer(this, &AAssaultWeapon::WeaponTrace, FireRate,
true);
}

// [Server] ProcessWeaponStop
//UFUNCTION(Reliable, Server, WithValidation)
bool AAssaultWeapon::ProcessWeaponStop_Validate() { return true; }
void AAssaultWeapon::ProcessWeaponStop_Implementation()
{
 // [AllClients]
 StopWeaponEffects();

 // [Server] Stop WeaponTrace Timer
 GetWorldTimerManager().ClearTimer(this, &AAssaultWeapon::WeaponTrace);
}

// [Server] WeaponTrace
void AAssaultWeapon::WeaponTrace()
{

…
 // Test For Collision
 if (Hit.bBlockingHit)
 {
 // [AllClients] Effects
 StartHitEffects(Hit);

 // [Server] Damaging
 ADwarfCharacter* Dwarf = Cast<ADwarfCharacter>(Hit.GetActor());
 if (Dwarf)
 {
 Dwarf->TakeDamage(DamagePower, FDamageEvent(),
GetInstigatorController(), this);
 }
 AUnrealShmupCharacter* Player =
Cast<AUnrealShmupCharacter>(Hit.GetActor());
 if (Player)
 {
 Player->TakeDamage(DamagePower, FDamageEvent(),
GetInstigatorController(), this);
 }
 }
}

// [AllClients] StartHitEffects
//UFUNCTION(Unreliable, NetMulticast)
void AAssaultWeapon::StartHitEffects_Implementation(FHitResult Hit)
{
 UGameplayStatics::SpawnEmitterAtLocation(GetWorld(), HitFX, Hit.Location);
}

And that’s it! There’s still more to implement, but if there are any follow up questions or if
you’d like to see the full source code, please feel free to ask! My contact is on the cover page.
And if you fully implement the rest of this Unreal SHMUP as Multiplayer, it should look
something like the pictures near the start of this guide!

