
'Unreal Engine 4' Network Compendium

Created by Cedric 'eXi' Neukirchen
Blog: cedric-neukirchen.net

Co-Founder of Salty Panda Studios
You can hire us: saltypandastudios.com

Document-Version 1.5.5

http://www.cedric-neukirchen.net/
https://saltypandastudios.com/

Table of Contents
ATTENTION...4
Introduction.. 5
Network in Unreal..6

A small example:.. 6
Another example:... 6

IMPORTANT!.. 7
Framework & Network.. 8

Common Classes... 11
Game Mode.. 12

Examples and Usage... 13
Blueprint... 13
UE4++.. 17

Game State...20
Examples and Usage... 21

Blueprint... 21
UE4++.. 24

Player State.. 26
Examples and Usage... 27

Blueprint... 27
UE4++.. 29

Pawn...31
Examples and Usage... 32

Blueprint... 32
UE4++.. 36

Player Controller...40
Examples and Usage... 42

Blueprint... 43
UE4++.. 45

HUD.. 48
Widgets (UMG)...49

Dedicated vs Listen Server.......................................50

Dedicated Server... 50
Listen-Server...51

Replication...52
What is 'Replication'?... 52
How to use 'Replication':...53
Replicating Properties...54

Remote Procedure Calls.. 59
Requirements and Caveats... 60

RPC invoked from the Server..61
RPC invoked from a Client.. 61

RPCs in Blueprints... 62
RPCs in C++.. 63

Validation (C++)... 65

Ownership..67
Actors and their Owning Connections.................................69

Actor Relevancy and Priority...............................71
Relevancy.. 71
Prioritization... 73

Actor Role and RemoteRole.................................75
Role/RemoteRole Reversal... 76
Mode of Replication... 77

ROLE_SimulatedProxy..78
ROLE_AutonomousProxy... 79

Traveling in Multiplayer..80
Non-/Seamless travel..80
Main Traveling Functions... 81

UEngine::Browse...81
UWorld::ServerTravel.. 82
APlayerController::ClientTravel... 82

Page 2

Enabling Seamless Travel...83
Persisting Actors / Seamless Travel..84

Online Subsystem Overview.....................................85
Online Subsystem Module... 86

Basic Design...86
Use of Delegates.. 87
Interfaces.. 88
Profile..88
Friends..88
Sessions... 88
Shared Cloud..89
User Cloud..89
Leaderboards..89
Voice... 89
Achievements... 89
External UI.. 90

Sessions and Matchmaking... 90
Basic Life-Time of a Session.. 91
Session Interface..92
Session Settings...93
Session Management...94

Creating Sessions.. 94
Create a Session via Blueprint .. 94
Create a Session via C++.. 94

Updating Sessions... 95

Destroying Sessions..96
Destroy Session via Blueprint...96
Destroy Session via C++.. 96

Searching Sessions...97
Searching Session via Blueprint... 97
Searching Session via C++...97

Joining Sessions... 98
Joining Session via Blueprint..98
Join Session via C++.. 98

Cloud-Based Matchmaking... 99
Following and Inviting Friends...100

How to Start a Multiplayer Game......................101
Advanced Settings... 102

Use Single Process... 104
Run as Dedicated Server.. 105

Start and Connect to a Server... 106
Blueprint...106

Start a Server.. 106
Connect to a Server.. 106

UE4++..107
Start a Server.. 107
Connect to a Server.. 107

Starting via Command Line... 108
Connection Process..109

The major steps are...109
Sources:... 111

Page 3

ATTENTION

This Compendium should only be used with a base understanding of the Singleplayer
Game Framework of Unreal Engine 4.

It will NOT teach beginners how to use Unreal Engine 4 in general.

Please refer to the “Blueprint Compendium”, created by Marcos Romero, for getting
started with Unreal Engine 4 as a beginner.

This Network Compendium expects you to know how to use Blueprints and also C++
(for the C++ examples).

Examples were created in Unreal Engine Version 4.14.x, so they might differ a bit from the newest
UE4 version you are using.

It's solely meant to get you started with Networking in UE4!

Page 4

Introduction

Welcome to this, hopefully, useful Unreal Engine 4 Network Compendium.

The official Documentation is already quite good, but I wanted to sum up all the stuff,
which I learned in the past two years while working with UE4 and Multiplayer Games,

in one big Compendium with Blueprint and Code examples.

The following pages will introduce you into the Network Framework, explain Classes,

Replication, Ownership, and more. When ever I can, I will provide a Blueprint and

a C++ example, which should shed some light on how the things work.

The pages will, of course, also contain lots of content taken from the

official Documentation (Source 1*), since this is how the system works after all.
This Document is meant as a summary and not as a written
redefinition of something that already has been explained!

Page 5

Network in Unreal
Unreal Engine 4 uses a standard Server-Client architecture.

This means, that the Server is authoritative and all data must be send from Client to Server first.

Then the Server validates the data and reacts depending on your code.

A small example:
When you move your Character, as a Client, in a Multiplayer Match, you don't actually move your Character
by yourself, but tell the Server that you want to move it. The Server then updates the location of the Character
for everyone else, including you.

Note: To prevent a feeling of “lag” for the local Client, Coders often, in addition, let this Player directly control
their Character locally, although the Server still might override the Character's Location when the Client starts
cheating! This means, that the Client will (almost) never 'talk' to other Clients directly.

Another example:
When sending a Chat-Message to another Client, you are actually sending it to the Server, which then

passes it to the Client you want to reach. This could also be a Team, Guild, Group, etc.

Page 6

IMPORTANT!

Never trust the Client! Trusting the Client means, you don't test the

Clients actions before executing them. This allows cheating!

A simple example would be Shooting:

Make sure to test, on the Server, if the Client actually has Ammo

and is allowed to shoot again instead of directly processing the shot!

Page 7

Framework & Network

With the previous information about UE4's Server-Client architecture, we can split the framework into 4 sections:

• Server Only – These Objects only exist on the Server

• Server & Clients – These Objects exist on the Server and on all Clients

• Server & Owning Client – These Objects only exist on the Server and the owning Client

• Owning Client Only – These Objects only exist on the Client

“Owning Client” is the Player/Client, who owns the Actor.

You can see this the same way as you own your computer.

Ownership becomes important for “RPCs” later.

The following table, on the next page, shows you some of the common classes

and in which section they exist.

Page 8

Server Only Server & Clients Server & Owning Client Owning Client Only

This is how some of the most important classes are laid out in the network framework. (Source 2*)

Page 9

AGameMode AGameState

APlayerState APlayerController

APawn

AHUD

UMG Widgets

1

*

1 1

1

1

1 1

1

*

The picture on the left shows
another example (Dedicated Server
with 2 clients) of how objects of
these classes would be distributed
through the network framework:

The intersection between Client 1
and Client 2 has no objects,
because they don't actually share
objects that only they know about.
(Source 2*)

Page 10

Common Classes

The following pages will explain some of the most Common Classes.

They will also provide small examples of how these Classes would be used.

This list will be extended through out the whole document and is only meant to

get you started, so I can freely talk about the Classes without explaining them!

The listed examples will all require knowledge about Replication.

So if you can't follow them, just ignore them for now until you read the Chapters about Replication etc.

Note: Some game genres might use these Classes differently.

The following examples and explanations aren't the only way to go.

Page 11

Game Mode
(click name to get to the detailed API Page for this Class)

NOTE: With 4.14, the GameMode Class got split into GameModeBase and GameMode. GameModeBase has less features,
because some games just might not need the full feature list of the old GameMode Class.

The class AGameMode is used to define the RULES of your game. This includes the used classes, like Apawn,
PlayerController, APlayerState and more.

It is only available on the Server. Clients don't have an object of the GameMode and will only get a nullptr when trying to
retrieve it.

Example:

GameModes might be known through common modes as Deathmatch, Team Deathmatch or Capture the Flag.

This means, that a GameMode can define things like:

• Do we have Teams or does everyone play for their own score?

• What are the winning conditions? How many kills does someone/a team need?

• How are the points achieved? Killing someone? Stealing a flag?

• What Characters will be used? What weapons are allowed? Only pistols?

Page 12

https://goo.gl/143e2h

Examples and Usage

In Multiplayer, the GameMode also has some interesting functions that

help us managing Players and/or the general Match flow.

Blueprint
The first stop we gonna take is the “Override Function” section of the Blueprint Version:

You can implement your own logic for these functions to fit specific Rules to your
Game. This includes changing the way the GameMode spawns the DefaultPawn or
on what you want to decide if the Game is Ready to Start:

For example checking if all Players have joined yet and are ready:

Page 13

But there are also Events that you can use to react to certain things, which happen through out the Match.

A good example for this, which I often use, is the 'Event OnPostLogin'.

This is called every time a new Player joins the Game.

Later you will learn more about the Connecting Process, but for now we will go along with it.

The Event passes you a valid PlayerController, that is owned by the connecting Player's Connection (later more about that
too).

This can be used to already interact with this Player, spawn a new Pawn for him or just save his PlayerController in an Array
for later.

Page 14

As already mentioned, you can use the GameMode to manage the general Match Flow

of your Game. This is also linked to the functions, which you can override (like 'Ready to start Match').

These Functions and Events can be used to control your current Match State. Most of them

will be called automatically when the 'Ready to..' functions return TRUE, but you can also use them manually.

'New State' is a simple 'FName' Type. You could now ask, “why is this not handled in the GameState Class?”

Well it is. These GameMode functions are actually working hand in hand with the GameState. This is just to give

you a point to manage the State far away from the Client, since the GameMode only exists on the Server!

Page 15

Of course the GameMode also has important variables you
can and want to use.

This is the list of already inherited Variables. Some
of them can be set via the ClassDefaults of the
GameMode Blueprint:

Most of them are pretty self-explaining, like 'Default Player Name', which gives you the ability to give every connecting
Player a default PlayerName that can be accessed via the PlayerState Class.

Or 'bDelayedStart', which will keep the Game from starting, even if the 'Ready to start Match' meets all other criteria.

One of the more important Variable is the so called 'Options String'. These are options, separated by a '?', which you can
pass via the 'OpenLevel' function or when you call 'ServerTravel' as a ConsoleCommand.

You can use 'Parse Option' to extract passed Options, such as 'MaxNumPlayers':

Page 16

UE4++

All of the Blueprint stuff, on the previous page, can also be done in C++.

Without writing up the same information again, I will provide some code examples on how to recreate the previous Blueprint
Images.

Since 'ReadyToStartMatch' is a 'BlueprintNativeEvent', the actual C++ Implementation of the function is called
'ReadyToStartMatch_Implementation'. This is the one we want to override:

/* Header file of our GameMode Child Class inside of the Class declaration */

// Maximum Number of Players needed/allowed during this Match

int32 MaxNumPlayers;

// Override Implementation of ReadyToStartMatch

virtual bool ReadyToStartMatch_Implementation() override;

/* CPP file of our GameMode Child Class */

bool ATestGameMode::ReadyToStartMatch_Implementation() {

Super::ReadyToStartMatch();

return MaxNumPlayers == NumPlayers;

}

Page 17

The 'OnPostLogin' function is virtual and simply called 'PostLogin' in C++.

Let's override this too:

/* Header file of our GameMode Child Class inside of the Class declaration */

// List of PlayerControllers

TArray<class APlayerController*> PlayerControllerList;

// Overriding the PostLogin function

virtual void PostLogin(APlayerController* NewPlayer) override;

/* CPP file of our GameMode Child Class */

void ATestGameMode::PostLogin(APlayerController* NewPlayer) {

Super::PostLogin(NewPlayer);

PlayerControllerList.Add(NewPlayer);

}

Page 18

Of course, all the Match-handling functions can be overridden and changed too, so I won't list them here.

You can check out the API that I linked in the GameMode Title.

The last C++ example for the GameMode will be the 'Options String':

/* Header file of our GameMode Child Class inside of the Class declaration */

// Maximum Number of Players needed/allowed during this Match

int32 MaxNumPlayers;

// Override BeginPlay, since we need that to recreate the BP version

virtual void BeginPlay() override;

/* CPP file of our GameMode Child Class */

void ATestGameMode::BeginPlay() {

Super::BeginPlay();

// 'FCString::Atoi' converts 'FString' to 'int32' and we use the static 'ParseOption' function of the

// 'UGameplayStatics' Class to get the correct Key from the 'OptionsString'

MaxNumPlayers = FCString::Atoi(*(UGameplayStatics::ParseOption(OptionsString, “MaxNumPlayers”)));

}

Page 19

Game State
(click name to get to the detailed API Page for this Class)

NOTE: With 4.14, the GameState Class got split into AGameStateBase and AGameState.

GameStateBase has less features, because some games just might not need the full feature list of the old GameState Class.

The class AGameState is probably the most important class for shared information between Server and Clients.

The GameState is used to keep track of the current State of the Game. This includes, for Multiplayer important, a List of
connected Players (APlayerState).

The GameState is replicated to all Clients. So everyone can access it. This makes the GameState to one of the most centered
classes for Multiplayer Games.

While the GameMode would tell how much kills are needed to win, the GameState would keep track of the current amount of
kills of each Player and/or Team!

What information you store here is completely up to you. It could be an array of scores or an array of a custom struct that you
use to keep track of groups and guilds.

Page 20

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/GameFramework/AGameState/index.html

Examples and Usage

In Multiplayer, the GameState Class is used to keep track of the current State of the Game, which also includes the Players
and their PlayerStates. The GameMode makes sure, that the Match State functions of the GameState are called and the
GameState itself gives you the opportunity to use them on Clients too.

Compared to the GameMode, the GameState doesn't give us much to work with. But this still allows us to create our own
logic, which should mostly try to spread information to Clients.

Blueprint

We get a few Variables from the base GameState Class that we can use.
PlayerArray*, as well as the MatchState and the ElapsedTime are
replicated, so Clients can also access them.

This does not count for the AuthorityGameMode. Only the Server can
access it since the GameMode only exists on the Server.

*The PlayerArray is not directly replicated, but every PlayerState is and they
add themselves to the PlayerArrayon Construction.

Also the GameState collects them once when it is created.

Page 21

An additional page for the PlayerArray, which describes in C++, where it gets “replicated”.

Inside of the PlayerState Class itself:

void APlayerState::PostInitializeComponents() {

[…]

UWorld* World = GetWorld();

// Register this PlayerState with the Game's ReplicationInfo

if(World->GameState != NULL) {

World->GameState->AddPlayerState(this);

}

[…]

}

And in the GameState itself:

void AGameState::PostInitializeComponents() {

[…]

for(TActorIterator<APlayerState> It(World); It; ++It) {

AddPlayerState(*It);

}

}

void AGameState::AddPlayerState(APlayerState* PlayerState) {

if(!PlayerState->bIsInactive) {

PlayerArray.AddUnique(PlayerState);

}

}

All of this happens on the Server and on the Client instances of Player- and GameState!

Page 22

A small example, which I could provide you with, would be keeping track of the Score of two Teams 'A' and 'B'. Let's say we
have a Custom Event, which is called when a Team scores.

It passes a boolean, so we know which Team scored. Later in the “Replication” Part you will read about the Rule that only
the Server can replicate Variables, so we make sure only he can call this Event. It is called from another Class (for example a
Weapon that killed someone) and this should happen on the Server (always!), so we don't need an RPC here.

Since these variables and the GameState are replicated, you can use these two Variables

and get them in any other Class you want to, for example, to display them in a Scoreboard Widget.

Page 23

UE4++

To recreate this small example, we need a bit more Code, but despite the function itself,

the Code needed to setup the Replication is only needed once per Class.

/* Header file of our GameState Class inside of the Class declaration */

// You need this include to get the Replication working. Good place for it would be your Projects Header!

#include “UnrealNetwork.h”

// Replicated Specifier used to mark this variable to replicate

UPROPERTY(Replicated)

int32 TeamAScore;

UPROPERTY(Replicated)

int32 TeamBScore;

// Function to increase the Score of a Team

void AddScore(bool TeamAScored);

Page 24

You will read more about this function in the Replication part!

/* CPP file of our GameState Class */

// This function is required through the Replicated specifier in the UPROPERTY Macro and is declared by it

void ATestGameState::GetLifetimeReplicatedProps(TArray<FLifetimeProperty>& OutLifetimeProps) const {

Super::GetLifetimeReplicatedProps(OutLifetimeProps);

DOREPLIFETIME(ATestGameState, TeamAScore);

DOREPLIFETIME(ATestGameState, TeamBScore);

}

/* CPP file of our GameState Class */

void ATestGameState::AddScore(bool TeamAScored) {

if(TeamAScored)

TeamAScore++;

else

TeamBScore++;

}

Page 25

Player State
(click name to get to the detailed API Page for this Class)

The class APlayerState is the most important class for a specific Player.

It is meant to hold current information about the Player. Each Player has their own

PlayerState. The PlayerState is also replicated to everyone and can be used

to retrieve and display data on other Clients. An easy way to access

all PlayerStates, that are currently in the Game, is the PlayerArray inside

of the GameState Class.

Example information that you might want to store here:

• PlayerName – Current Name of the connected Player

• Score – Current Score of the connected Player

• Ping – Current Ping of the connected Player

• GuildID – A Guild's ID, in which the Player might be

• Or other replicated information that other Players might need to know about

Page 26

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/GameFramework/APlayerState/index.html

Examples and Usage

In Multiplayer, the PlayerState is meant to hold information about the State of the connected Player.

This includes Name, Score, Ping and your custom variables.

Since this PlayerState Class is replicated, it can easily used to retrieve data of a Client on other Clients.

Blueprint

Sadly the main important functions aren't exposed to Blueprint at the time I'm writing this.

So I will only cover them in the C++ part of the PlayerState examples. But we can have a look at some of the Variables:

These variables are all replicated, so they are kept in sync on all Clients.

Sadly they are not easily settable in Blueprints, but nothing keeps you from creating your own
versions of them.

An example on how the PlayerName variable can be set
by calling “ChangeName”, a GameMode function, and
passing it the PlayerController of the Player.

Page 27

The PlayerState is also used to make sure that data stays persistent during Level Changes or unexpected connection issues.

The PlayerState has two functions dedicated to deal with reconnecting Players and also Players that traveled with the
Server to a new Map.

With 4.13 released and my Pull Request accepted, these functions are now available in Blueprint Children of the PlayerState.

The PlayerState takes care of copying over the information, which it already holds, into a new PlayerState.

This either gets created through the Level Change or because a Player is reconnecting.

Page 28

UE4++

The same also exists in C++, of course. Here is the

/* Header file of our PlayerState Child Class inside of the Class declaration */

// Used to copy properties from the current PlayerState to the passed one
virtual void CopyProperties(class APlayerState* PlayerState);

// Used to override the current PlayerState with the properties of the passed one

virtual void OverrideWith(class APlayerState* PlayerState);

These functions can be implemented into your own C++ PlayerState Child-Class to manage data that you added to your
custom PlayerState. Make sure to add the “override” specifier at the end and calling “Super::” so that the original
implementation stays active (if you want it to).

Page 29

The implementation could look similar to this:

/* CPP file of our PlayerState Child Class */

void ATestPlayerState::CopyProperties(class APlayerState* PlayerState) {

Super::CopyProperties(PlayerState);

if(PlayerState) {

ATestPlayerState* TestPlayerState = Cast<ATestPlayerState>(PlayerState);

if(TestPlayerState)

TestPlayerState->SomeVariable = SomeVariable;

}

}

void ATestPlayerState::OverrideWith(class APlayerState* PlayerState) {

Super::OverrideWith(PlayerState);

if(PlayerState) {

ATestPlayerState* TestPlayerState = Cast<ATestPlayerState>(PlayerState);

if(TestPlayerState)

SomeVariable = TestPlayerState->SomeVariable;

}

}

Page 30

Pawn
(click name to get to the detailed API Page for this Class)

The class APawn is the 'Actor' that the Player actually controls. Most of the time it's a human character, but it could also be a
cat, plane, ship, block, etc. The Player can only possess one Pawn at a time, but can easily switch between Pawns by un-
possessing and re-possessing them.

The Pawn is mostly replicated to all Clients.

The Pawn's child class ACharacter is often used, because it comes with an already networked MovementComponent,
which handles replicating the Position, Rotation, etc. of a Players Character.

Note: Not the Client is moving the Character. The Server is getting the Move-inputs from the Client and is then moving and
replicating the Character!

Page 31

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/GameFramework/APawn/index.html

Examples and Usage

In Multiplayer, we mostly use the Replication Part of the Pawn to display the Character and share some information with
others. A simple example is the 'Health' of a Character.

But we don't only replicate 'Health' to make it visible for others, we also replicate it, so that the Server has authority over it
and the Client can't cheat.

Blueprint

Despite the 'standard' overridable functions, the Pawn also has two that

react to possessing and un-possessing. They could be used to hide a Pawn,

when he gets un-possessed:

Note: Since possessing happens on the Server, these Events are only called on the Server

Page 32

Version if the Pawn and need a MulticastRPCFunction to change visibility, like in the Screenshot above!

Page 33

The second example will take the 'Health' example into account. The following picture will show how you would use the
'EventAnyDamage' and a replicated 'Health' variable to lower the Players health. This happens on the Server and not on the
Client!

Since the Pawn should be replicated, the 'DestroyActor' Node will also destroy the Client versions of the Actor, if called by
the Server. On the Client site, we can use the replicated 'Health' Variable for our HUD or for a HealthBar on top of
everyone's head.

You can easily do this by creating a Widget with a Progressbar and a Reference of a Pawn.

Since this is a Network Compendium, I expect you to know about Widgets, or at least to read about them somewhere else,
otherwise this would be too much for this Document.

Page 34

Let's assume we have a 'Health' and 'MaxHealth' Variable on our 'TestPawn' Class, all set to replicate.

Now after creating the 'TestPawn' reference Variable inside of the Widget, as well as the ProgressBar, we can bind the
percentage of that bar to the following function:

Now, after setting up the WidgetComponent, we can set the 'Widget Class to use', to your HealthBar Widget and on
BeginPlay, do the following:

Page 35

'BeginPlay' is called on all Instances of the Pawn, means on the Server and all Client Versions.

So every Instance now sets itself to the Pawn Reference of the Widget it has.

And since the Pawn and the Health Variable is replicated, we have the correct percentage above every Pawn's head.

If the Replication process is not clear at this point, it's all cool, just keep reading and at the end

of this Document, you will understand why this works so easily!

Page 36

UE4++

For the C++ examples, I won't recreate the Widget Blueprint Example. It's just too much background stuff that needs to be
done to get Widgets working in C++ and I don't want to cover this here. So we will focus on the Possess Events and the
Damage Event.

In C++, the two Possess Events are called:

virtual void PossessedBy(AController* NewController);

virtual void UnPossessed();

The 'UnPossessed' Event does not pass the old PlayerController though.

/* Header file of our Pawn Child Class, inside of the Class declaration */

// SkeletalMesh Component, so we have something to hide

class USkeletalMeshComponent* SkeletalMesh;

// Overriding the UnPossessed Event

virtual void UnPossessed() override;

Page 37

We also need a MulticastRPCFunction. You will read about it later in the RPC Chapter:

/* Header file of our Pawn Child Class, inside of the Class declaration */

UFUNCTION(NetMulticast, unreliable)

void Multicast_HideMesh();

/* CPP file of our Pawn Child Class */

void ATestPawn::UnPossessed() {

Super::UnPossessed();

Multicast_HideMesh();

}

// You will read later about RPC's and why that '_Implementation' is a thing

void ATestPawn::Multicast_HideMesh_Implementation() {

SkeletalMesh->SetVisibility(false);

}

Page 38

And we also want to recreate the Health example in C++. As always, if you don't understand the steps of Replication at this
moment, don't worry, the upcoming Chapters will explain it to you.

Just skip the examples for now if they seem to complicated in terms of Replication.

The 'TakeDamage' Function is the equivalent of the 'EventAnyDamage' Node. To cause Damage, you normally call
'TakeDamage' on the Actor you want to deal damage to and if that Actor implements the function, it will react to it, similar to
how this example does it.

/* Header file of our Pawn Child Class, inside of the Class declaration */

// Replicated Health Variable

UPROPERTY(Replicated)

int32 Health;

// Overriding the Damage Event

virtual float TakeDamage(float Damage, struct FDamageEvent const& DamageEvent,

AController* EventInstigator, AActor* DamageCauser) override;

Page 39

/* CPP file of our Pawn Child Class */

// This function is required through the Replicated specifier in the UPROPERTY Macro and is declared by it

void ATestPawn::GetLifetimeReplicatedProps(TArray<FLifetimeProperty>& OutLifetimeProps) const {

Super::GetLifetimeReplicatedProps(OutLifetimeProps);

// This actually takes care of replicating the Variable

DOREPLIFETIME(ATestPawn, Health);

}

float ATestPawn::TakeDamage(float Damage, struct FDamageEvent const& DamageEvent,

AController* EventInstigator, AActor* DamageCauser) {

float ActualDamage = Super::TakeDamage(Damage, DamageEvent, EventInstigator, DamageCauser);

Health -= ActualDamage; // Lower the Health of the Player

if(Health <= 0.0) // And destroy it if the Health is less or equal 0

Destroy();

return ActualDamage;

}

Page 40

Player Controller
(click name to get to the detailed API Page for this Class)

The class APlayerController might be the most interesting and complicated Class that we come across. It's also the center
for a lot of Client stuff, since this is the first Class that the Client actually 'owns'.

The PlayerController can be seen as the 'Input' of the Player. It is the link of the Player with the Server. This means, every
Client has one PlayerController.

A Client's PlayerController only exists on himself AND the Server, but other Clients don't know about other PlayerController.

Every Client only knows about his own!

The result of that is, that the Server has a reference of all Client PlayerControllers!

The term 'Input' does not directly mean, that all actual Input (Button Presses, Mouse Movement, Controller Axis, etc.) needs to
be placed in the PlayerController.

It is a good practice to place Character specific Input (Cars work differently than Humans) into your Character/Pawn Classes
and to put Input that should work with all Characters, or even when the Character Object is not valid, into your
PlayerController!

Page 41

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/GameFramework/APlayerController/index.html

An important note here is:

Input is always first passed through the PlayerController. If the PlayerController does NOT use it, it will be processed in the
other Classes that might use the same Input. Consuming Input can, of course, be deactivated when needed.

Furthermore, an important thing to know is:

How do I get the correct PlayerController ?

The famous node 'GetPlayerController(0)' or code line 'UGameplayStatics::GetPlayerController(GetWorld(), 0);'
works differently on Server and Clients, but it's not really difficult.

• Calling it on the Listen-Server will return the Listen-Server's PlayerController

• Calling it on a Client will return the Client's PlayerController

• Calling it on a Dedicated Server will return the first Client's PlayerController

Other numbers than '0' will not return other Clients for a Client. This index is meant to be used for local Players (Splitscreen),
which we won't cover.

Page 42

Examples and Usage

Although that the PlayerController is one of the most important Classes for Networking, there isn't much to it by default. So
we will create a small example, just to make clear why it's needed. In the Chapter about Ownership, you will read about why
the PlayerController is important for RPCs. The following example will show you how to utilize the PlayerController to increase
a replicated variable in the GameState by pressing a Widget Button.

Why do we need the PlayerController for this?

Well, I don't want to write down the RPC and Ownership Chapter here again, so just a short explanation:

Widgets only exist on the Client/Listen-Server and even if they are owned by the Client, a Server RPC has no instance on the
Server to run on.

It's simply not replicated!

This means we need a way to get the Button Press over to the Server, so he can then increase the variable.

Why not calling the RPC on the GameState directly? Because it's owned by the Server.

A Server RPC needs the Client as the owner!

Page 43

Blueprint

So first of all, we need a simple Widget with a Button that we can press. This is a Network Compendium, so please learn
the Widget Stuff on your own. I know you can do that!

I will post the Images in the opposite order, so you can see where it ends and what Events actually call the Events of the
previous Images. So starting with our goal, the GameState. It gets a normal Event that increments a replicated Integer
variable:

This Event will get called on the Server Side, inside of our ServerRPC in our PlayerController:

Page 44

And at last, we have our Button, which gets pressed and calls the ServerRPC:

So when we Click on the Button (Client Side), we use the ServerRPC in our PlayerController to get to the Server Side
(possible, because the PlayerController is owned by the Client!) and then call the 'IncreaseVariable' Event of the
GameState to increment the replicated Integer.

This Integer, since it is replicated and set by the Server, will now update on all instances of the GameState and Clients can
also see the update!

Page 45

UE4++

For the C++ version of this example, I will replace the Widget with the BeginPlay of the PlayerController. This doesn't make
much sense, but implementing Widgets in C++ needs some more code which I don't want to post here, since it would be a bit
too much!

/* Header file of our PlayerController Child Class, inside of the Class declaration */

// Server RPC. You will read more about this in the RPC Chapter

UFUNCTION(Server, unreliable, WithValidation)

void Server_IncreaseVariable();

// Also overriding the BeginPlay function for this example

virtual void BeginPlay() override;

/* Header file of our GameState Child Class, inside of the Class declaration */

// Replicated Integer Variable

UPROPERTY(Replicated)

int32 OurVariable;

public:

// Function to Increment the Variable

void IncreaseVariable();

Page 46

/* CPP file of our PlayerController Child Class */

// Otherwise we can't access the GameState functions

#include “TestGameState.h”

// You will read later about RPC's and why that '_Validate' is a thing

bool ATestPlayerController::Server_IncreaseVariable_Validate() {

return true;

}

// You will read later about RPC's and why that '_Implementation' is a thing

void ATestPlayerController::Server_IncreaseVariable_Implementation() {

ATestGameState* GameState = Cast<ATestGameState>(UGameplayStatics::GetGameState(GetWorld()));

GameState->IncreaseVariable();

}

void ATestPlayerController::BeginPlay() {

Super::BeginPlay();

// Make sure only the Client Version of this PlayerController calls the ServerRPC

if(Role < ROLE_Authority)

Server_IncreaseVariable();

}

Page 47

/* CPP file of our GameState Child Class */

// This function is required through the Replicated specifier in the UPROPERTY Macro and is declared by it

void ATestGameState::GetLifetimeReplicatedProps(TArray<FLifetimeProperty>& OutLifetimeProps) const {

Super::GetLifetimeReplicatedProps(OutLifetimeProps);

// This actually takes care of replicating the Variable

DOREPLIFETIME(ATestGameState, OurVariable);

}

void ATestGameState::IncreaseVariable() {

OurVariable++;

}

That's quite some code. If you don't understand the use of some of the functions and their naming yet, don't worry. The
upcoming Chapters will help you understand why it's done like this.

Page 48

HUD
(click name to get to the detailed API Page for this Class)

The class AHUD is a Class that is only available on each Client and can be accessed through the PlayerController. It will be
automatically spawned.

Before UMG (Unreal Motion Graphics) has been released, the HUD Class has been used to draw text, textures and more in
the viewport of the Client.

By now, Widgets replaced the HUD Class most of the time.

You can still use the HUD Class to debug or maybe have an isolated area to manage spawning, showing, hiding and
destroying Widgets.

Since the HUD isn't directly linked to Networking, examples would only show Singleplayer stuff. That's why I will skip them.

Page 49

https://docs.unrealengine.com/latest/INT/API/Runtime/Engine/GameFramework/AHUD/index.html

Widgets (UMG)
(click name to get to the detailed API Page for this Class)

Widgets are used in Epic Games' new UI System, called Unreal Motion Graphics.

They inherit from Slate, which is a language used to create UI within C++ and also used for the Unreal Engine 4 Editor itself.

Widgets are only available locally on Client (Listen-Server).

They are NOT replicated and you always need a separated, replicated Class to perform replicated actions through, for
example, Button-Presses.

To learn more about UMG and Widgets, please use the provided API Link above.

We already had a small example for the Widgets usage inside of the APawn examples. So I will skip them here.

Page 50

https://docs.unrealengine.com/latest/INT/API/Runtime/UMG/index.html

Dedicated vs Listen Server

Dedicated Server

A Dedicated Server is a standalone Server that does NOT require a Client.

It runs separated from the Game Client and is mostly used to have a Server running that Players can always join/leave.

Dedicated Servers can be compiled for Windows and Linux and can be run on Virtual Servers that Players can connect to
via a fixed IP-Address.

Dedicated Servers have no visual part, so they don't need a UI, nor do they have a PlayerController. They also have no
Character or similar representing them in the Game.

Page 51

Listen-Server

A Listen-Server is a Server that is also a Client.

This means, that the Server always has a at least ONE Client connected.

This Client is called the Listen-Server and if he disconnects, the Server will shutdown.

Due to being also a Client, the Listen-Server needs UI and has a PlayerController, which represents the Client part. Getting
'PlayerController(0)' on a Listen-Server, will return the PlayerController of that very Client.

Since the Listen-Server runs on the Client itself, the IP that others need to connect to is the one of the Client. Compared to the
Dedicated Server, this often comes with the problem of Internet Users NOT having a static IP.

But using an OnlineSubsystem (explained later), the changing IP problem can be solved.

Page 52

Replication

What is 'Replication'?

Replication is the act of the Server passing information/data to the Clients.

This can be limited to specific entities and groups. Blueprints mostly perform Replication according to the Settings of the
affected AActor.

The first Class, which is capable of replicating properties, is the Actor.

All of the before mentioned Classes inherit from Actor at some point, giving them the ability to replicate properties if needed.

Though not all of them do this the same way.

The GameMode, for example, doesn't replicate at all and only exists on the Server.

Page 53

How to use 'Replication':

Replication can be activated in the Class Defaults/Constructor of an Actor child:

ATestCharacter::ATestCharacter() {

// Network game, so let's setup Replication

bReplicates = true;

bReplicateMovement = true;

}

An Actor with 'bReplicates' set to TRUE will be spawned and replicated on all Clients when spawned by the Server. And
ONLY when spawned by the Server. IF a Client spawns this Actor, the Actor will ONLY exist on this very Client.

Page 54

Replicating Properties

So, when Replication is enabled, we can replicate variables. There are multiple
ways to do this. We will start with the most basic one:

Setting the “Replication” Drop-Down menu to “Replicated” will make sure this
variable gets replicated to all replicated Instances of this Actor. Of course this only
works for Actors that are set to replicate.

With 4.14, variables can now be replicated under certain condition, even in
Blueprints. To read more about the conditions, scroll further.

Replicated Variables are marked with 2 white circles.

Page 55

Page 56

Replicating a variable in C++ is slightly more work at the beginning.
But it also allows us to specify who we want to replicate this variable to.

/* Header file inside of the Classes declaration */

// Create replicated health variable

UPROPERTY(Replicated)

float Health;

The .cpp file will get this 'GetLifetimeReplicatedProps' function. The header declaration, of that function, is already provided
through some UE4 macro, so we don't need to care about that one. Here you actually define the rules of replicating your
variables.

void ATestPlayerCharacter::GetLifetimeReplicatedProps(TArray<FLifetimeProperty>& OutLifetimeProps) const {

Super::GetLifetimeReplicatedProps(OutLifetimeProps);

// Here we list the variables we want to replicate + a condition if wanted

DOREPLIFETIME(ATestPlayerCharacter, Health);

}

You can also do a conditional replication here:

// Replicates the Variable only to the Owner of this Object/Class

DOREPLIFETIME_CONDITION(ATestPlayerCharacter, Health, COND_OwnerOnly);

Page 57

Condition Description
COND_InitialOnly This property will only attempt to send on the initial bunch

COND_OwnerOnly This property will only send to the Actor's owner

COND_SkipOwner This property send to every connection EXCEPT the owner

COND_SimulatedOnly This property will only send to simulated Actors

COND_AutonomousOnly This property will only send to autonomous Actors

COND_SimulatedOrPhysic
s This property will send to simulated OR bRepPhysics Actors

COND_InitialOrOwner This property will send on the initial packet, or to the Actor's owner

COND_Custom
This property has no particular condition, but wants the
ability to toggle on/off via SetCustomIsActiveOverride

It's important that you understand that the whole replication process only works from Server to Client and NOT the other
way round.

We will learn later how to get the Server to replicate something, that the Client wants to share with others (for example:
PlayerName).

Page 58

A different version of Replication is the so called “RepNotify” version.

It makes use of a function that will be called on all instances when receiving the updated value.

With this, you can call logic that needs to be called AFTER the Value has been replicated.

In Blueprints, this function will be created automatically once

you select “RepNotify” in the Replication Drop-Down menu:

Page 59

The C++ Version needs a bit more, but works the same:

/* Header file inside of the Classes declaration */

// Create RepNotify Health variable

UPROPERTY(ReplicatedUsing=OnRep_Health)

float Health;

// Create OnRep Function | UFUNCTION() Macro is important! | Doesn't need to be virtual though

UFUNCTION()

virtual void OnRep_Health();

/* CPP file of the Class */

void ATestCharacter::OnRep_Health() {

if(Health < 0.0f)

 PlayDeathAnimation();

}

With 'ReplicatedUsing=FUNCTIONAME', we specify the function that should get called when the Variable is successfully
replicated. This functions needs to have the 'UNFUNCTION()' macro, even if it's empty!

Page 60

Remote Procedure Calls

Other ways for Replication are so called “RPC”s. Short form for “Remote Procedure Call”.

They are used to call something on another instance. Your TV Remote does the same with your Television.

UE4 uses it to call functions from Client to Server, Server to Client or Server to a specific group.

These RPCs can't have a return value! To return something, you need to use a second RPC.

But this only works under certain rules.

They are listed in this table, which can be found in the official Documentation:

• Run on Server – Is meant to be executed on the Server Instance of the Actor

• Run on owning Client – Is meant to be executed on the Owner of this Actor

• NetMulticast – Is meant to be executed on all Instances of this Actor

Page 61

Requirements and Caveats
There are a few requirements that need to be met for RPCs to be completely functional:

1. They must be called from Actors.

2. The Actor must be replicated.

3. If the RPC is being called from Server to be executed on a Client, only the Client who actually owns that Actor will
execute the function.

4. If the RPC is being called from Client to be executed on the Server, the Client must own the Actor that the RPC
is being called on.

5. Multicast RPCs are an exception:

◦ If they are called from the Server, the Server will execute them locally, as well as execute them on all
currently connected Clients.

◦ If they are called from Clients, they will only execute locally, and will not execute on the Server.

◦ For now, we have a simple throttling mechanism for Multicast events:

▪ A Multicast function will not replicate more than twice in a given.

▪ Actor's network update period. Long term, we expect to improve on this.

Page 62

RPC invoked from the Server

Actor Ownership Not
replicated

NetMulticast Server Client

Client-owned
Actor

Runs on Server
Runs on Server
and all Clients Runs on Server

Runs on Actor's owning Client

Server-owned
Actor

Runs on Server
Runs on Server
and all Clients Runs on Server Runs on Server

Unowned Actor Runs on Server
Runs on Server
and all Clients Runs on Server Runs on Server

RPC invoked from a Client

Actor Ownership Not
replicated

NetMulticast Server Client

Owned by
invoking Client

Runs on
invoking Client

Runs on
invoking Client Runs on Server

Runs on invoking Client

Owned by
a different Client

Runs on
invoking Client

Runs on
invoking Client

Dropped
Runs on invoking Client

Page 63

Server-owned
Actor

Runs on
invoking Client

Runs on
invoking Client Dropped

Runs on invoking Client

Unowned Actor Runs on
invoking Client

Runs on
invoking Client Dropped

Runs on invoking Client

RPCs in Blueprints

RPCs in Blueprints are created by creating CustomEvents and setting them to Replicate.

RPCs can't have a return value! So functions can't be used

to create them.

The 'Reliable' check box can be used to mark the RPC as
'important', making sure it will 99.99% executed and not

Page 64

dropped due to connection issues or so.

Note: Don't mark every RPC as Reliable!

Page 65

RPCs in C++

To use the whole Network stuff in C++, you need to include “UnrealNetwork.h” in your project Header!

RPCs in C++ are relatively easy to create, we only need to add the specifier to the UFUNCTION() Macro.

// This is a Server RPC, marked as unreliable and WithValidation (is needed!)

UFUNCTION(Server, unreliable, WithValidation)

void Server_PlaceBomb();

The CPP file will implement a different function. This one needs '_Implementation' as a suffix.

// This is the actual implementation (Not Server_PlaceBomb). But when calling it, we use "Server_PlaceBomb"

void ATestPlayerCharacter::Server_PlaceBomb_Implementation() {

// BOOM!

}

The CPP file also needs a version with '_Validate' as a suffix. Later more about that.

bool ATestPlayerCharacter::Server_PlaceBomb_Validate() {

return true;

}

Page 66

The other two types of RPCs are created like this:

Client RPC, which needs to be marked as 'reliable' or 'unreliable'!

UFUNCTION(Client, unreliable)

void ClientRPCFunction();

and Multicast RPC, which also needs to be marked as 'reliable' or 'unreliable'!

UFUNCTION(NetMulticast, unreliable)

void MulticastRPCFunction();

Of course, we can also add the 'reliable' keyword to an RPC to make it reliable.

UFUNCTION(Client, reliable)

void ReliableClientRPCFunction();

Page 67

Validation (C++)

The idea of Validation is, that if the Validation function for an RPC detects that any of the parameters are bad, it can notify
the system to disconnect the Client/Server who initiated the RPC call.

Validation is required by now for every ServerRPCFunction. The 'WithValidation' keyword in the UFUNCTION Macro is
used for that.

UFUNCTION(Server, unreliable, WithValidation)

void SomeRPCFunction(int32 AddHealth);

Here is an example of how the '_Validate' Function can be used:

bool ATestPlayerCharacter::SomeRPCFunction_Validate(int32 AddHealth) {

if(AddHealth > MAX_ADD_HEALTH) {

return false; // This will disconnect the caller!

}

return true; // This will allow the RPC to be called!

}

Page 68

Note: Client to Server RPCs require the '_Validate' function to encourage secure Server RPC functions and
to make it as easy as possible for someone to add code to check each and every parameter to be valid

against all the known input constraints!

Page 69

Ownership

So, Ownership is something important to understand. You already saw the table, which contained stuff like “Client-owned
Actor”.

Server or Clients can 'own' an Actor.

An example is the PlayerController, which is owned by the Client (or Listen-Server).

Another example would be a spawned/placed Door in the Scene. This will mostly be owned by the Server.

But why is this a problem?

If you check out the table again, you will notice that, for example, a Server RPC will be dropped if a Client calls it on an Actor
that he does NOT own.

So the Client can't call “Server_OpenDoor” on the Server owned door. But how do we work around that?

Page 70

We use a Class/Actor, that the Client actually owns. And this is where the PlayerController starts to shine.

So instead of trying to enable Input on the Door and calling a
Server RPC there, we create the Server RPC in the
PlayerController and let the Servercall an Interface function on
the Door (for example: Interact()).

If the Door implements the correct Interface, it will then call the
defined logic and hopefully replicate the open/closed status
correctly.

Note: Interfaces are nothing Multiplayer specific and I highly recommend to look them up if you don't understand what they
are!

Page 71

Actors and their Owning Connections

As already mentioned in the Class overview, the PlayerController is the first Class that the Player actually 'owns', but what
does that mean?

Each Connection has a PlayerController, created specifically for that Connection. A PlayerController, that is created for that
reason, is owned by that Connection. So when we determine if an Actor is owned by someone, we actually query up to the
most outer Owner and if this is a PlayerController, then the Connection that owns the PlayerController also owns that Actor.

Kinda simple, or? So what would be an example for that?

The Pawn/Character. They are possessed by the PlayerController and at this time, the PlayerController is the Owner of the
possessed Pawn. This means, the Connection that owns this PlayerController also owns the Pawn.

This is only the case WHILE the PlayerController is possessing the Pawn. Un-possessing it will result in the Client no longer
owning the Pawn.

Page 72

So why is this important and for what do I need this?

• RPCs need to determine which Client will execute a Run-On-Client RPC

• Actor Replication and connection Relevancy

• Actor property Replication conditions when the Owner is involved

You already read that RPCs react differently when getting called by Client/Server depending on the Connection they are
owned by.

You also read about conditional Replication, where (in C++) variables are only replicated under a certain condition.

The following topic describes the Relevancy Part of the list.

Page 73

Actor Relevancy and Priority

Relevancy

So, what is 'Relevancy' and why do we need that?

Imagine having a Game with Levels/Maps big enough that Players could actually be 'un-important' towards others.

Why would Player A need to see the mesh of Player B if they are miles apart from each other?

To improve bandwidth, Unreal's Network Code makes it possible that the Server only tells Clients about Actors that are in
that Client's relevant set.

Page 74

Unreal applies the following rules (in order) to determine the relevant set of Actors for a Player.

These tests are implemented in the virtual function 'AActor::IsNetRelevantFor()'.

1. If the Actor is 'bAlwaysRelevant', is owned by the Pawn or PlayerController, is the Pawn,
or the Pawn is the Instigator of some action like noise or damage, it is relevant

2. If the Actor is 'bNetUserOwnerRelevancy' and has an Owner, use the Owner's relevancy

3. If the Actor is 'bOnlyRelevantToOwner', and does not pass the first check, it is not relevant

4. If the Actor is attached to the Skeleton of another Actor, then its relevancy is determined by the relevancy of its base

5. if the Actor is hidden ('bHidden == true') and the root component does not collide then the Actor is not relevant

◦ If there is no root component, 'AActor::IsNetRelevantFor()' will log a warning and ask if the Actor should be set to
'bAlwaysRelevant = true'

6. If 'AGameNetworkManager' is set to use distance based relevancy, the Actor is relevant if it is closer than the net cull
distance

Note: Pawn and PlayerController override 'AActor::IsNetRelevantFor()' and have different conditions for relevancy as a
result.

Page 75

Prioritization

Unreal uses a load-balancing technique that prioritizes all Actors, and gives each one a fair share of the bandwidth based
on how important it is to Gameplay.

Actors have a float variable called “NetPriority”. The higher this number, the more bandwidth that Actor receives relative
to others. An Actors with a “NetPriority” of 2.0 will update exactly twice as frequently as an Actor with a “NetPriority” of
1.0.

The only thing that matters with priorities is their Ratio. So obviously you cannot improve Unreal's Network Performance

by increasing all of the priorities.

The current priority of an Actor is calculated using the virtual function 'AActor::GetNetPriority()'.

To avoid starvation 'AActor::GetNetPriority()' multiplies 'NetPriority' with the time since the Actor was last replicated.

The 'GetNetPriority' functions also consider the relative location of and distance between the Actor and the Viewer.

Page 76

Most of these Settings can be found in the Class Defaults of the Blueprint and, of course, be setup inside the C++ Class of
each Actor Child.

bOnlyRelevantToOwner = false;

bAlwaysRelevant = false;

bReplicateMovement = true;

bNetLoadOnClient = true;

bNetUseOwnerRelevancy = false;

bReplicates = true;

NetUpdateFrequency = 100.0f;

NetCullDistanceSquared = 225000000.0f;

NetPriority = 1.0f;

Page 77

Actor Role and RemoteRole

We have two more important properties for Actor Replication.

These two properties tell you:

• Who has Authority over the Actor

• Whether the Actor is replicated or not

• The Mode of the Replication

First thing we want to determine, is who has Authority over a specific Actor.

To determine if the current running instance of the Engine has Authority, check that the Role property is ROLE_Authority. If it
is, then this instance of the Engine is in charge of this Actor (whether it's replicated or not).

Note: This is not the same as Ownership!

Page 78

Role/RemoteRole Reversal

Role and RemoteRole could be reversed depending on who is inspecting these values.

For example, if on the Server you have this configuration:

• Role == Role_Authority

• RemoteRole = ROLE_SimulatedProxy

Then the Client would see it as this:

• Role == ROLE_SimulatedProxy

• RemoteRole == ROLE_Authority

This makes sense, since the Server is in charge of the Actor and replicating it to Clients.

The Clients are just supposed to receive updates, and simulate the Actor between updates.

Page 79

Mode of Replication

The Server doesn't update Actors every update. This would take way too much bandwidth and CPU resources. Instead, the
Server will replicated Actors at a frequency specified on the 'AActor::NetUpdateFrequency' property.

This means, that some time will pass on the Client between Actor updates. This could result in Actors looking sporadic or
choppy in their movement. To compensate for this, the Client will simulate the Actor between updates.

There are currently two types of simulation that occur:

ROLE_SimulatedProxy

and

ROLE_AutonomousProxy

Page 80

ROLE_SimulatedProxy

This is the standard simulation path, and is generally based on extrapolating movement based on the last known velocity.

When the Server sends an update for a particular Actor, the Client will adjust its position towards the new location, and then in
between updates, the Client will continue to move the Actor based on the most recent velocity sent from the Server.

Simulating using last known velocity is just one example of how general simulation works.

There is nothing stopping you from writing custom code to use some other information to extrapolate between Server updates.

Page 81

ROLE_AutonomousProxy

This is generally only used on Actors that are possessed by PlayerControllers.

This just means that this Actor is receiving inputs from a human controller, so when we extrapolate, we have a bit more
information, and can use actual human inputs to fill in the missing info (rather than extrapolating based on the last known
velocity).

Page 82

Traveling in Multiplayer

Non-/Seamless travel

The difference between 'Seamless' and 'Non-seamless' travel is simple.

'Seamless' travel is a non-blocking operation, while 'Non-seamless' will be a blocking call.

A 'Non-seamless' travel for a Client means, that he disconnects from the Server and then re-connects to the same Server,
which will have the new Map ready to load.

Epic recommends to use 'Seamless' travel as often as possible, since this will result in a smoother experience, and will avoid
any issues that can occur during the re-connection process.

There are three ways in which a 'Non-seamless' travel must occur:

• When loading a Map for the first time

• When connecting to a Server for the first time as a Client

• When you want to end a Multiplayer Game, and start a new one

Page 83

Main Traveling Functions
There are three main functions that drive traveling:

UEngine::Browse

• Is like a hard reset when loading a new Map

• Will always result in a 'Non-seamless' travel

• Will result in the Server disconnecting current Clients before traveling to the destination Map

• Clients will disconnect from current Server

• Dedicated Server cannot travel to other Servers, so the Map must be local (cannot be URL)

Page 84

UWorld::ServerTravel

• For the Server only

• Will jump the Server to a new World/Level

• All connected Clients will follow

• This is the way Multiplayer Games travel from Map to Map, and the Server is the one in charge to call this function

• The Server will call 'APlayerController::ClientTravel' for all Client Players that are connected

APlayerController::ClientTravel

• If called from a Client, will travel to a new Server

• If called from a Server, will instruct the particular Client to travel to the new Map (But stay connected to the current Server)

Page 85

Enabling Seamless Travel

'Seamless' travel comes with a Transition Map. This is configured through the 'UGameMapsSettings::TransitionMap'
property. By default this property is empty. If your Game leaves this property empty, an empty Map will be created for it.

The reason the Transition Map exists, is that there must always be a World loaded (which holds the Map), so we can't free the
old Map before loading the new one. Since Maps can be very large, it would be a bad idea to have the old and new Map in
memory at the same time, so this is where the Transition Map comes in.

Once you have the transition map setup, you set 'AGameMode::bUseSeamlessTravel' to true, and from there 'Seamless'
travel should work!

This can, of course, also be Setup via a GameMode Blueprint

and via the Project Settings in the “Maps and Nodes” Tab.

Page 86

Persisting Actors / Seamless Travel

When using 'Seamless' travel, it's possible to carry over (persist) Actors from the current Level

to the new one. This is useful for certain Actors, like Inventory Items, Players, etc.

By default, these Actors will persist automatically:

• The GameMode Actor (Server only)

◦ Any Actors further added via 'AGameMode::GetSeamlessTravelActorList'

• All Controllers that have a valid PlayerState (Server only)

• All PlayerControllers (Server only)

• All local PlayerControllers (Server and Client)

◦ Any Actors further added via 'APlayerController::GetSeamlessTravelActorList' called on local PlayerControllers

Here is the general flow when executing 'Seamless' travel:

1. Mark Actors that will persist to the Transition Level (read above)

2. Travel to the Transition Level

3. Mark Actors that will persist to the Final Level (read above)

4. Travel to the Final Level

Page 87

Online Subsystem Overview
The Online Subsystem and its Interfaces exist to provide a clear abstraction to common online functionality across the
available set of platforms in a given environment.

Platforms in this context would refer to Steam, Xbox Live, Facebook, etc. Portability is one of the main goals.

For what do I need a Subsystem ?

By default you will use the 'SubsystemNULL'. This allows you to host LAN Sessions (so you can find Sessions via a Server
List and join them in your LAN network) or join directly via IP. What it doesn't allow you, is to host such a Session on the
Internet.

Why?

Because you have no Master Server that provides the Client with a list of Servers/Sessions.

Subsystems, like for example Steam, will allow you to also host Servers/Session that are visible over the Internet. This is
important to understand!

You can also create your own Subsystem/Master Server, but that requires a lot of coding outside of UE4.

Page 88

Online Subsystem Module

Basic Design

The base module Online Subsystem is responsible for regulating how platform specific modules are defined and registered
with the Engine. All access to a platform service will go through this module. When loaded, this module will in turn try to load
the default platform server module specified in the 'Engine.ini' – file:

[OnlineSubsystem]

DefaultPlatformService = <Default Platform Identifier>

If successful, this default online interface will be available via the static accessor when no parameter is specified.

static IOnlineSubsystem* Get(const FName& SubsystemName = NAME_None);

Additional services are loaded on demand when called from this function with a proper identifier.

Page 89

Use of Delegates

Much like Unreal Engine 3 (UE3), the Online Subsystem will make heavy use of Delegates when calling functions with
Asynchronous side effects. It is important to respect the Delegates and wait for the proper Delegate to be called before
calling functions further down the chain.

Failure to wait for an Asynchronous task can cause crashes and unexpected, undefined behavior. Waiting for Delegates is
especially important during connectivity failures such as a cable pull or other disconnect events. The amount of time a task
may take to finish may seem instantaneous in the ideal case, but can be upwards to almost a minute in the timeout case.

The Delegate interface is fairly straightforward, with each Delegate clearly defined at the top of each interface header. Every
Delegate has an Add, Clear, and Trigger function. (Although Triggering delegates manually is discouraged).

Common practice is to Add() the Delegate right before calling the appropriate function, and then Clear() the Delegate from
within itself.

Page 90

Interfaces

Not all platforms will implement all Interfaces and Game Code should plan accordingly.

Profile

Interface definition for the online services Profile services. Profile services are defined as anything related to a given User
Profile and its associated metadata (Online Presence, Access Permissions, etc).

Friends

Interface definition for the online services Friends services. Friends services are anything related to the Maintenance of
Friends and Friends Lists.

Sessions

Interface definition for the online services Session services.

Session services are defined as anything related managing a Session and its state.

Page 91

Shared Cloud

Provides the Interface for sharing files already on the cloud (see User Cloud with other users).

User Cloud

Provides the Interface for per User Cloud file storage.

Leaderboards

Provides the Interface for accessing online Leaderboards.

Voice

Provides the Interface for Voice Communication over network while in the game.

Achievements

Provides the Interface for Reading/Writing/Unlocking Achievements.

Page 92

https://docs.unrealengine.com/latest/INT/Programming/Online/index.html#usercloud

External UI

Provides the Interface for accessing a given platform's external Interfaces if available.

Sessions and Matchmaking

Matchmaking is the process of matching Players with Sessions. A Session is basically an Instance of the Game running on
the Server with a given set of properties, which is either advertised, so that it can be found and joined by Players wanting to
play the Game, or private, so only Players who are invited or notified of it in some way can join.

Picture an Online Game Lobby that lists all of the Games currently being played.

Each Game in the list is a Session, or individual online match. Players are matched with Sessions either by searching or
some other means and then join the Session to play the Match.

Page 93

Basic Life-Time of a Session

• Create a new Session with desired Settings

• Wait for Players to request to join the Match

• Register Players who want to join

• Start the Session

• Play the Match

• End the Session

• Un-register the Players. Either:

◦ Update the Session if you want to change the Type of Match and go back to waiting for Players to join

◦ Destroy the Session

Page 94

Session Interface

The Session Interface, IOnlineSession, provides platform-specific functionality for setting up the pieces behind the scenes
that are necessary in order to perform Matchmaking as well as other methods of allowing Players to find and join online
games.

This includes Session Management, finding Sessions though search or other means, as well as joining and leaving those
Sessions.

The Session Interface is created and owned by the Online Subsystem. This means it only exists on the Server.

Only one Session Interface will ever exist at a time - the Session Interface for the platform the engine is currently running on.
While the Session Interface performs all of the Session handling, the Game doesn't generally interact directly with it.

Instead, the GameSession, AGameSession, acts as a game-specific wrapper around the Session Interface and the game
code makes calls to it when it needs to interact with the Session.

The GameSession is created and owned by the GameMode, and also only exists on the Server when running an online game.

Each game can potentially have multiple GameSession types, but only one will ever be used at a time.

The most common case for a game having more than one type of GameSession is to add a type of GameSession for when
the game is using a Dedicated Server.

Page 95

Session Settings

The SessionSettings, defined by the 'FOnlineSessionSettingsclass', are a set of properties that determine the
characteristics of the session.

In the base implementation, these are things like:

• Number of Players allowed

• Is the Session advertised or private

• Is the Session a LAN match

• Is the Server dedicated or Player-hosted

• Are invites allowed

• Etc.

Using the Online Game Lobby Example, each of those games is a Session and has its own SessionSettings. For example,
some Sessions may be Player versus Player (PvP) while others are Cooperative Multiplayer (Co-Op).

Different Sessions could be playing different maps or playlists, require different numbers of players, etc.

Page 96

Session Management
(click header to get to the detailed tutorial for Sessions in C++)

All Session Nodes are Asynchronous tasks (Clock Symbol) and will call “OnSuccess” or “OnFailure” once they're finished. In
the meanwhile, you can use the top most exec output.

Creating Sessions

In order for Players to find a Session and potentially join it, you need to create a Session and set up its properties, as well as
decide which of those properties will be visible. Registering a Dedicated Server Session via Blueprint might not be supported
at the current Engine Version. In C++ you should do the normal C++ Session creation inside the AGameSession by overriding
the 'RegisterServer' function!

Create a Session via Blueprint

For creating a Session in Blueprints, you can use the 'CreateSession' Node that
Epic already exposed. It doesn't offer many options, but this can be extended via
Plugins from the Forum.

Create a Session via C++

My Blog Post about Using Sessions via C++!

Page 97

https://cedric-neukirchen.net/2021/06/27/ue4-multiplayer-sessions-in-c/
http://cedric.bnslv.de/sessions-in-cpp/

Updating Sessions

Updating is done when you want to change the Settings of an existing Session and is performed using the
'IOnlineSession::UpdateSession()' function.

For example, the Session may be set up currently to only allow 8 Players, while it needs to allow 12 Players for the next
match. To update the Session, 'UpdateSession()' would be be called passing it new Session Settings that specify a 12
Player maximum.

When the request to update a Session has completed, the 'OnUpdateSessionComplete' delegate is fired. This provides
the opportunity to perform any configuration or initialization necessary to handle the Session Settings changing.

Updating a Session is generally performed between Matches on the Server, but it is also performed on the Client in order to
keep the Session information in sync.

There is no Blueprint Version of this function yet, but it can be extended via Plugins from the Forum.

Page 98

Destroying Sessions

When a Session ends and is no longer needed, the Session is destroyed using the 'IOnlineSession::DestroySession()'
function. When the destruction operation has completed, the 'OnDestroySessionComplete' Delegate is fired, enabling you to
perform cleanup operations.

Destroy Session via Blueprint

For Blueprints, you can use the 'DestroySession' Node,which Epic already
exposed.

Destroy Session via C++

My Blog Post about Using Sessions via C++!

Page 99

https://cedric-neukirchen.net/2021/06/27/ue4-multiplayer-sessions-in-c/

Searching Sessions

The simplest way to find Sessions is to search for Sessions that match some desired subset of Settings.

This could be in response to the Player choosing a collecting of filters in a User Interface, or it could be done automatically
behind the scenes, based on the Player's skill and other factors, or it could be a combination of both methods.

The most basic form of Searching for Sessions is the classic Server Browser that shows all available games and allows the
Player to filter those based on the type of Game they want to play.

Searching Session via Blueprint

For Blueprints you can use the 'FindSessions' Node that Epic already exposed
for you. You can specify the Number of results and if you want to search for LAN
or Online Games.

More can be specified using Plugins from the Forum.

Searching Session via C++

My Blog Post about Using Sessions via C++!

Page 100

https://cedric-neukirchen.net/2021/06/27/ue4-multiplayer-sessions-in-c/

Joining Sessions

Once you have determined a Session for the Player to join, the process of joining is initiated by calling
'IOnlineSession::JoinSession()' and passing it the Number of the Player and the Name and SearchResult of the Session
to join. When the joining process completes, the 'OnJoinSessionComplete' Delegate is fired. This is where the logic to get
the Player into the Match is performed.

More information about this logic can be read below and on my Session C++ Blog-Post.

Joining Session via Blueprint

For joining a Session via Blueprint, you can use the 'JoinSession'
Node, that Epic already exposed. It needs a SessionResult, which you
can get from the 'FindSession' Node.

It returns on Array of SessionResults. The 'JoinSession' Node will
directly join the Map 'OnSuccess'.

You don't have to deal with that.

Join Session via C++

My Blog Post about Using Sessions via C++!

Page 101

https://cedric-neukirchen.net/2021/06/27/ue4-multiplayer-sessions-in-c/

Cloud-Based Matchmaking

Cloud-Based Matchmaking refers to built-in Matchmaking Services that are available, and generally platform specific. An
example of this type of service is the TrueSkill System available through the Microsoft Xbox Live Service.

To initiate Matchmaking on Platforms that support it, you call 'IonlineSession::Startmatchmaking()' and pass it the
Controller Number of the Player to matchmake for, the SessionName, SessionSettings to use if creating a new Session, and
Settings to Search against. The 'OnMatchmakingComplete' Delegate is fired when Matchmaking is complete. This provides
a bool specifying whether the process was successful and the Name of the Session to join in that case.

A Matchmaking action in process can be canceled by calling 'IOnlineSession::CancelMatchmaking()' and passing it the
Controller Number of the Player and the SessionName that was passed to the call to start Matchmaking in the first place.

The 'OnCancelMatchmakingCompletedelegate' is fired when the cancel operation is completed.

Page 102

Following and Inviting Friends

On platforms that support the concept of Friends, Players can follow Friends into a Session or invite Friends to join them in
a Session.

Following a Friend into a Session is done by calling 'IOnlineSession:FindFriendSession()' and passing it the Number of the
local Player that wants to join the Session and the ID of the Friend already in the Session. The
'OnFindFriendSessionComplete' Delegate is fired when the Session is found and it contains a SearchResult that can be
used to join the Session.

A Player can also invite one or more Friends to join them in their current Session using
'IOnlineSession::SendSessionInviteToFriend()' or 'IOnlineSession::SendSessionInviteToFriends()' and passing in the
Local Player Number, SessionName, and ID(s) of the Player(s) to be invited.

When a Friend accepts an invitation, the 'OnSessionInviteAccepted' Delegate containing the SearchResult of the Session
to join is fired.

Page 103

How to Start a Multiplayer Game

The easiest and straight forward way to start a Multiplayer Game is to set the Number of Players, in the Play Drop-Down
Menu, to something higher than 1.

This will automatically create a network connection between Server and
Clients. So even if you start the Game in your Main-Menu Level with Number
of Players set to 2+, the Games will be connected!

This is always a network connection. It's NOT a local couch-coop Multiplayer
connection. This needs to be handled differently and will NOT be covered at
this point.

Page 104

Advanced Settings

Advanced Settings allow you to specify some more options for the Play-Mode.

One of the categories lets you set Multiplayer Options:

Page 105

The following table will explain the Multiplayer Options one by one.

Option Description

Number of Players
This option defines the number of players to spawn in the game when launched. The
editor and listen server count as players, a dedicated server will not. Clients make up the
remainder of players.

Server Game Options
Here you can specify additional options that will be passed to the server as URL
parameters.

Run Dedicated Server If checked, a separate dedicated server will be launched. Otherwise the first player will act
as a listen server that all other players can connect to.

Auto Connect To
Server

Controls, if the Game should directly connect the Clients to the Server.
Means, when you just want to test Gameplay, you can check it and not care about setting
up Menu for connecting. Other way round, if you have the Menu, you might want to
deactivate the boolean.

Route 1st Gamepad to
2nd Client

When running multiple player windows in a single process, this option determines how the
game pad input get routed. If unchecked (default) the 1st game pad is attached to the 1st
window, 2nd to the 2nd window, and so on. If it is checked, the 1st game pad goes to the
2nd window. The 1st window can then be controlled by keyboard/mouse, which is
convenient if two people are testing on the same computer.

Use Single Process
This spawns multiple player windows in a single instance of Unreal Engine 4. This will
load much faster, but has potential to have more issues. When this is unchecked,
additional options become available.

Create Audio Device
for Every Player

Enabling this will allow rendering accurate audio from every player's perspective but will
use more CPU.

Play in Editor
Description

This is a description of what will occur when playing based on the currently applied
Multiplayer settings.

Page 106

Use Single Process

When Use Single Process is checked, multiple windows
are spawned in a single instance of Unreal Engine 4.

When this option is unchecked, multiple instances of UE4
will be launched for each player that is assigned and
additional options become available.

Option Description
Editor Multiplayer
Mode

This is the NetMode to use for Play In Editor (Play Offline, Play As Listen
Server or Play As Client).

Command Line
Arguments

Here you can assign additional command line options that will be passed to standalone
game instances.

Multiplayer Window
Size (in pixels)

Define the width/height to use when spawning additional standalone game instances.

Page 107

Run as Dedicated Server

Without checking “Run Dedicated Server” the first Client will be a Listen-
Server.

On the other hand, when marking it as TRUE, all Players will be Clients.

Page 108

Start and Connect to a Server
The Subsystem and Session Chapter already explained how to setup a Session/Server

via the Session System, but what about normal starting and connecting via IP? Pretty easy!

Blueprint

Start a Server

To start the Server, without the Session System, you simply use the 'OpenLevel' Node and
pass it the 'Level Name' and the 'listen' Option. You can also pass more Options, separated
by a '?', which can be retrieved in the GameMode Class as explained.

A Dedicated Server, without Session System, already starts on the correct map, which you
can specify in the 'Maps&Nodes' Tab of your Project Settings.

Connect to a Server

To connect to a Server, you simply use the 'Execute Console
Command' Node with the Command 'open IPADDRESS', where
'IPADDRESS' is replaced by the actual IPADRESS of the Server.

 This can be filled in through a Widget Text-Box, for example.

Page 109

UE4++

Similar to Blueprints, you can use these two functions, that have the same result as the Blueprint Nodes.

Start a Server

UGameplayStatics::OpenLevel(GetWorld(), “LevelName”, true, “listen”);

Connect to a Server

// Assuming you are not already in the PlayerController (if you are, just call ClientTravel directly)

APlayerController* PlayerController = UGameplayStatics::GetPlayerController(GetWorld(), 0);

PlayerController->ClientTravel(“IPADDRESS”, ETravelType::TRAVEL_Absolute);

Page 110

Starting via Command Line

Basic command lines (these commands use the editor and therefore

don't require cooked data):

Type Command
Listen Server UE4Editor.exe ProjectName MapName?Listen -game

Dedicated Server UE4Editor.exe ProjectName MapName -server -game -log

Client UE4Editor.exe ProjectName ServerIP -game

Note: Dedicated Servers are headless by default. If you don't use “-log”, you won't see any window to present the Dedicated
Server!

Page 111

Connection Process
When a new Client connects for the first time, a few things happen:

First, the Client will send a request to the Server to connect.

The Server will process this request, and if the Server doesn't deny the connection, will send a response back to the Client,
with proper information to proceed.

The following page will show the major steps of the connection process. This is a direct extract from the official
Documentation.

The major steps are
1. Client sends a connect request.

2. If the Server accepts, it will send the current map

3. The Server will wait for the Client to load this map

4. Once loaded, the Server will then locally call “AgameMode::PreLogin”

• This will give the GameMode a chance to reject the connection

5. If accepted, the Server will then call “AgameMode::Login”

• The role of this function is to create a PlayerController, which will then be replicated to the newly connected Client. Once
received, this PlayerController will replace the clients temporary PlayerController that was used as a placeholder during
the connection process Note that “APlayerController::BeginPlay” will be called here.
It should be noted that it is NOT yet safe to call RPC functions on this actor. You should wait until
“AGameMode::PostLogin” is called.

6. Assuming everything went well, “AGameMode::PostLogin” is called.

Page 112

• At this point, it is safe for the Server to start calling RPC functions on this PlayerController.

Page 113

That's it so far.

This might extend in the near future, but right now I feel like I covered a lot of

the basic and not so basic things for Multiplayer.

Hopefully this helped you to get started

with Multiplayer and Networking in Unreal Engine 4 and we will see some cool new

Multiplayer Games in the future!

Page 114

Sources:

*1: Despite my own knowledge, I used the official Documentation, as stated at the beginning of the Compendium.

*2: The main network framework, as well as the two (recreated by myself) images of the distribution of common classes is
documented by 'Nuno Afonso' and can be seen here: www.nafonso.com Thanks for this amazing page!

*3: Nearly all examples, Blueprint Pictures and C++ Code, are created by myself.

Page 115

	ATTENTION
	Introduction
	Network in Unreal
	A small example:
	Another example:

	IMPORTANT!
	Framework & Network
	Common Classes
	Game Mode
	Examples and Usage
	Blueprint
	UE4++

	Game State
	Examples and Usage
	Blueprint
	UE4++

	Player State
	Examples and Usage
	Blueprint
	UE4++

	Pawn
	Examples and Usage
	Blueprint
	UE4++

	Player Controller
	Examples and Usage
	Blueprint
	UE4++

	HUD
	Widgets (UMG)

	Dedicated vs Listen Server
	Dedicated Server
	Listen-Server

	Replication
	What is 'Replication'?
	How to use 'Replication':
	Replicating Properties

	Remote Procedure Calls
	Requirements and Caveats
	RPC invoked from the Server
	RPC invoked from a Client

	RPCs in Blueprints
	RPCs in C++
	Validation (C++)

	Ownership
	Actors and their Owning Connections

	Actor Relevancy and Priority
	Relevancy
	Prioritization

	Actor Role and RemoteRole
	Role/RemoteRole Reversal
	Mode of Replication
	ROLE_SimulatedProxy
	ROLE_AutonomousProxy

	Traveling in Multiplayer
	Non-/Seamless travel
	Main Traveling Functions
	UEngine::Browse
	UWorld::ServerTravel
	APlayerController::ClientTravel

	Enabling Seamless Travel
	Persisting Actors / Seamless Travel

	Online Subsystem Overview
	Online Subsystem Module
	Basic Design
	Use of Delegates
	Interfaces
	Profile
	Friends
	Sessions
	Shared Cloud
	User Cloud
	Leaderboards
	Voice
	Achievements
	External UI

	Sessions and Matchmaking
	Basic Life-Time of a Session
	Session Interface
	Session Settings
	Session Management
	Creating Sessions
	Create a Session via Blueprint
	Create a Session via C++

	Updating Sessions
	Destroying Sessions
	Destroy Session via Blueprint
	Destroy Session via C++

	Searching Sessions
	Searching Session via Blueprint
	Searching Session via C++

	Joining Sessions
	Joining Session via Blueprint
	Join Session via C++

	Cloud-Based Matchmaking
	Following and Inviting Friends

	How to Start a Multiplayer Game
	Advanced Settings
	Use Single Process
	Run as Dedicated Server

	Start and Connect to a Server
	Blueprint
	Start a Server
	Connect to a Server

	UE4++
	Start a Server
	Connect to a Server

	Starting via Command Line

	Connection Process
	The major steps are
	Sources:

