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1 Overview 
Adaptive Scalable Texture Compression (ASTC) is an advanced lossy texture compression technology 
developed by Arm and AMD.  

This guide provides information about how you can use ASTC effectively to optimize the performance 
of your apps. In particular, this guide covers the following subjects: 

• What is ASTC and why is it needed? 

• Technical details of the ASTC compression algorithm 

• How to use tools like Arm ASTC Encoder (astcenc) and Arm Mali Texture Compression Tool to 
compress game assets 

• How to use ASTC with graphics APIs like OpenGL ES and Vulkan 

• How to use ASTC with the Unity and Unreal Engine gaming engines 

At the end of this guide, you can check your knowledge. You will have learned about the best practices 
for using ASTC, including the key decisions you must take. 

 

https://developer.arm.com/architectures/learn-the-architecture/introducing-the-arm-architecture/check-your-knowledge
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2 Best practices 
This guide provides information about what ASTC is, specific technical details about how ASTC 
works, and guidance on how to use ASTC in your projects. 

The guide includes many pieces of advice regarding best practices for using ASTC. 

For your convenience, here are links to the sections in the guide that contain this best practice 
guidance: 

• ASTC compression tools 

o Compressing normal maps 

o Compressing mask maps 

• Using ASTC for game assets 

o Choosing a suitable bitrate 

o sRGB 

• Unity and ASTC 

o Build settings 

o Texture-specific settings 

o Building for different hardware 

• Unreal Engine and ASTC 
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3 Why treat textures differently? 
For most content, texture access is one of the main consumers of memory bandwidth in a system. 
Textures are usually represented as 2D image data. As content texture resolution and texture count 
increases, so does memory bandwidth. This memory bandwidth overhead can slow down GPU 
performance if we cannot load data fast enough to keep the shader cores busy. In addition, DRAM 
access is energy intensive, so high bandwidth also increases power consumption and thermal load. 

To reduce the impact on performance, we can use specialized compression schemes to reduce the 
size of texture resources. These real-time compression schemes are significantly different to the 
more general types of compression, like JPEG or PNG, that you are probably familiar with.  

Traditional compression schemes like JPG and PNG are designed to compress or decompress an 
entire image. They can achieve very good compression rates and image quality. However, they are not 
designed to let you access smaller portions of the full image easily without decompressing the entire 
image. 

When mapping 2D textures onto a model, individual texels might be extracted from the full texture 
image in an unpredictable order: 

• Not all texture elements might be needed. For example, depending on the orientation of the 
model, and any other objects that might be obscuring parts of it.  

• Texels that are rendered next to each other in the final image may originate from different parts 
of the texture. 

The following image shows the arrangement of different texture elements within a texture image, and 
a model with that texture applied. Notice that adjacent texels in the rendered image are not 
necessarily adjacent in the texture image.  
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It is computationally expensive for a GPU to decompress the entire image when it only needs a small 
portion of the whole. As a result, real-time compression schemes are designed to provide efficient 
decoding for random sampling of elements within a larger image, when they are used in shaders. 

There are various techniques to achieve this result, but most algorithms do the following: 

• Compress a fixed size NxM texel input block 

• Write this compressed block out into a fixed number of bits.  

This allows simple address calculation in the GPU. Because all input and output sizes are fixed, it is a 
relatively simple pointer offset calculation to calculate a sample address. We therefore only need to 
access the data from one NxM block to decompress any single texel. 
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4 ASTC format overview 
Adaptive Scalable Texture Compression (ASTC) is an advanced lossy texture compression technology 
developed by Arm and AMD. Khronos has adopted ASTC as an official extension to the OpenGL and 
OpenGL ES APIs, and as a standard optional feature for the Vulkan API. 

ASTC has the following advantages over older texture compression formats: 

• Format flexibility. ASTC can compress between one and four channels of data, including one non-
correlated channel like RGB+A (correlated RGB, non-correlated alpha). 

• Bit rate flexibility. ASTC provides a wide choice of bit rates when compressing images, between 
0.89 bits and 8 bits per texel (bpt). The bit rate choice is independent of the color format choice. 

• Advanced format support. ASTC can compress images in either Low Dynamic Range (LDR), LDR 
sRGB, or High Dynamic Range (HDR) color spaces. ASTC can also compress 3D volumetric 
textures. 

• Improved image quality. Despite the high degree of format flexibility, ASTC outperforms nearly all 
legacy texture compression formats on image quality at equivalent bit rates. Examples of legacy 
texture compression formats that ASTC outperforms include ETC2, PVRCT, and the BC formats. 

Bitrates below 1bpp are achieved by using a system of variable block sizes. Most block-based texture 
compression methods have a single fixed block size. By contrast, ASTC can store an image with a 
regular grid of blocks of any size from 4x4 to 12x12, including non-square block sizes. ASTC can also 
store 3D textures, with block sizes ranging from 3x3x3 to 6x6x6. 

Before the creation of ASTC, the available texture compression formats supported relatively few 
combinations of color format and bit rate, as shown in the following diagram:

The situation is even worse than this diagram shows. Many formats are either proprietary or not 
available on some operating systems, so any single platform has very limited compression choices. 

This situation makes developing content which is portable across multiple platforms difficult. Assets 
might need to be compressed differently for each platform. Each asset pack might need to use 
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different levels of compression, and might have no compression on some platforms. This would leave 
either some image quality, or some memory bandwidth efficiency, untapped. 

A better way was needed. The Khronos group requested proposals for a new compression algorithm 
to be adopted, like the earlier ETC algorithm was adopted for OpenGL ES. ASTC was the result, 
developed by Arm and AMD, and has been adopted as an official algorithm for OpenGL, OpenGL ES, 
and Vulkan. ASTC achieves almost complete coverage of the desirable format matrix, with a wide 
choice of bitrates available for content creators. The following diagram shows the available formats 
and bitrates: 

 



Adaptive Scalable Texture Compression User Guide 102162 
Issue 02 

 

 

5 The ASTC algorithm 
This section of the guide explains how the ASTC algorithm works. We start with a high-level overview 
of the block compression algorithm and color encoding process, then we examine the technical 
details. 

5.1 Block compression 
Compression formats for real-time graphics need the ability to quickly and efficiently make random 
samples into a texture. This places two technical requirements on any compression format. It must be 
possible to do the following: 

• Compute the address of data in memory given only a sample coordinate. 

• Decompress random samples without decompressing too much surrounding data. 

The standard solution that all contemporary real-time formats use, including ASTC, is to divide the 
image into fixed-size blocks of texels. Each block is then compressed into a fixed number of output 
bits. This feature makes it possible to access texels quickly, in any order, and with a well-bounded 
decompression cost. 

The 2D block footprints in ASTC range from 4x4 texels up to 12x12 texels, which all compress into 
128-bit output blocks. By dividing 128 bits by the number of texels in the footprint, we derive the 
format bit rates. These bit rates range from 8 bpt (128/(4*4)) down to 0.89 bpt (128/(12*12)). 

5.2 Color encoding 
ASTC uses gradients to assign the color values of each texel. Each compressed block stores the end-
point colors for a gradient, and an interpolation weight for each texel. During decompression, the 
color value for each texel is generated by interpolating between the two end-point colors, based on 
the per-texel weight. The following diagram shows this interpolation for a variety of texel weights: 
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Blocks often contain a complex distribution of colors, for example a red ball sitting on green grass. In 
these scenarios, a single-color gradient cannot accurately represent all different texel color values. 
ASTC allows a block to define up to four distinct color gradients, called partitions, and can assign each 
texel to a single partition. For our example, we require two partitions, one for the red ball texels and 
one for the green grass texels. The following diagram shows how the partition index specifies which 
color gradient to use for each texel: 

 

5.3 Storing alphabets 
Even though color and weight values per texel are notionally floating-point values, we have too few 
bits available to directly store the actual values. To reduce the storage size, these values must be 
quantized during compression. For example, if we have a floating-point weight for each texel in the 
range 0.0 to 1.0, we could choose to quantize to five values: 0.0, 0.25, 0.5, 0.75, and 1.0. We can then 
represent these five quantized values in storage using the integer values 0-4. 

In the general case, if we choose to quantize N levels, we need to be able to efficiently store 
characters of an alphabet containing N symbols. An N symbol alphabet contains log2(N) bits of 
information per character. If we have an alphabet of five possible symbols, then each character 
contains ~2.32 bits of information, but simple binary storage would require us to round up to three 
bits. This wastes 22.3% of our storage capacity.  
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The following chart shows the percentage of the bit-space that would be wasted using simple binary 
encoding to store an arbitrary N symbol alphabet: 

 

This chart shows that for most alphabet sizes, using an integer number of bits per character wastes a 
lot of storage capacity. Efficiency is critically important to a compression format, so this is an area that 
ASTC needed to address. 

One solution is to round the quantization level up to the next power of two, so that rather than being 
wasted the extra bits are used. However, this solution forces the encoder to spend bits which could 
be used elsewhere for a bigger benefit, so it reduces image quality and is a suboptimal solution. 

5.4 Quints and trits 
Instead of rounding up a five-symbol alphabet, called a quint, to three bits, a more efficient solution is 
to pack three quint characters together. Three characters in a five-symbol alphabet have 5^3 (125) 
combinations, and contain 6.97 bits of information. We can store these three quint characters in 
seven bits and have a storage waste of only 0.5%. 

We can similarly construct a three-symbol alphabet, called a trit, and pack trit characters in groups of 
five. Each character group has 3^5 (243) combinations, and contains 7.92 bits of information. We can 
store these five trit characters in eight bits and have a storage waste of only 1%. 

5.5 Bounded Integer Sequence Encoding 
The Bounded Integer Sequence Encoding (BISE), that ASTC uses, allows storage of character 
sequences using arbitrary alphabets of up to 256 symbols. Each alphabet size is encoded in the most 
space-efficient choice of bits, trits, and quints. 

• Alphabets with up to (2^n - 1) symbols can be encoded using n bits per character. 

• Alphabets with up (3 x 2^n - 1) symbols can be encoded using n bits (m) and a trit (t) per character, 
and reconstructed using the equation (t x 2^n + m). 

• Alphabets with up to (5 x 2^n - 1) symbols can be encoded using n bits (m) and a quint (q) per 
character, and reconstructed using the equation (q x 2^n + m). 
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When the number of characters in a sequence is not a multiple of three or five we must avoid wasting 
storage at the end of the sequence, so we add another constraint on the encoding. If the last few 
values in the sequence to encode are zero, the last few bits in the encoded bit string must also be 
zero. Ideally, the number of nonzero bits is easily calculated and does not depend on the magnitudes 
of the previous encoded values. This is challenging to arrange during compression, but it is possible. 
This means that we do not need to store any padding after the end of the bit sequence, because we 
can safely assume that they are zero bits. 

With this constraint in place, and by some smart packing of the bits, trits, and quints, BISE encodes a 
string of S characters in an N symbol alphabet using a fixed number of bits: 

• S values up to (2^N - 1) use (NxS) bits. 

• S values up to (3 * 2^N - 1) use (NxS + ceil(8S / 5)) bits. 

• S values up to (5 * 2^N - 1) use (NxS + ceil(7S / 3)) bits. 

The compressor chooses the option which produces the smallest storage for the alphabet size that is 
being stored. Some use binary, some use bits and a trit, and some use bits and a quint. If we compare 
the storage efficiency of BISE against simple binary for the range of possible alphabet sizes that we 
might want to encode, we see that BISE is much more efficient. The following chart shows the 
efficiency gain of BISE storage over binary storage: 

 

  

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
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5.6 Block sizes 
ASTC always compresses blocks of texels into 128-bit outputs. However, ASTC allows the developer 
to select from a range of block sizes to enable a fine-grained tradeoff between image quality and size. 
The following table shows the different block sizes result and the corresponding bits per texel: 

Table 5-1 ASTC 2D block sizes 

Block footprint Bits per texel 

4x4 8.00 

5x4 6.40 

5x5 5.12 

6x5 4.27 

6x6 3.56 

8x5 3.20 

8x6 2.67 

10x5 2.56 

10x6 2.13 

8x8 2.00 

10x8 1.60 

10x10 1.28 

12x10 1.07 

12x12 0.89 

5.7 Color endpoints 
The color data for a block is encoded as a gradient between two color endpoints. Each texel selects a 
position along that gradient, which is then interpolated during decompression. ASTC supports 16 
color endpoint encoding schemes, known as endpoint modes.  

The options for endpoint modes let you vary the following: 

• The number of color channels. For example, luminance, luminance+alpha, rgb, or rgba 

• The encoding method. For example, direct, base+offset, base+scale, or quantization level 

• The data range. For example, low dynamic range or High Dynamic Range 

The endpoint modes, and the endpoint color BISE quantization level, can be chosen on a per-block 
basis. 
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5.8 Color partitions 
Colors within a block are often complex. A single-color gradient often cannot accurately capture all 
the colors within a block. For example, the red ball lying on green grass described earlier in this 
section requires two color partitions, as shown in the following diagram: 

 

ASTC allows a single block to reference up to four color gradients, called partitions. Each texel is then 
assigned to a single partition for the purposes of decompression. 

Directly storing the partition assignment for each texel would need a lot of decompressor hardware 
to store it for all block sizes. Instead, ASTC algorithmically generates a range of patterns, using the 
partition index as a seed value. The compression process selects the best pattern match for each 
block. The block then only needs to store the index of the best matching pattern. The following image 
shows the generated patterns for two (top section of image), three (middle section of image), and four 
(bottom section of image) partitions for the 8x8 block size: 
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The number of partitions and the partition index can be chosen on a per-block basis, and a different 
color endpoint mode can be chosen per partition. 

5.9 Choosing the best encoding for each block 
During compression, the algorithm must select the correct distribution pattern and boundary color 
pairs, then generate the quantized values for each pixel. There is a certain degree of trial and error 
involved in the selection of patterns and boundary colors, so when compressing there is a trade-off 
between compression time and final image quality. The higher the quality, the more alternatives the 
algorithm tries before deciding which is best. However long the compression takes, the 
decompression time is fixed. This is because the image data can always be re-extrapolated from the 
pattern and boundary colors in a single pass. 

The compression algorithm can use different metrics to judge the quality of different attempts. These 
metrics range from pure value ratios of signal to noise, to a perceptual judgment weighted towards 
human visual acuity. The algorithm can also judge the channels individually rather than as a whole. 
Treating channels individually preserves detail for textures where the individual channels may be 
used as a data source for a shader program, or to reduce angular noise, which is important for tangent 
space normal maps. 

5.10 Texel weights 
Each texel requires a weight, which defines the relative contribution of each color endpoint when 
interpolating the color gradient. 

For smaller block sizes, we can choose to store the weight directly, with one weight per texel. 
However, for the larger block sizes there are not enough bits of storage to do this. To work around 
this issue, ASTC allows the weight grid to be stored at a lower resolution than the texel grid. The per-
texel weights are interpolated from the stored weight grid during decompression using a bilinear 
interpolation. 

Both the number of texel weights, and the weight value BISE quantization level, can be chosen on a 
per-block basis. 

5.11 Dual-plane weights 
Using a single weight for all color channels works well when there is good correlation across the 
channels, but this is not always the case. Common examples where we might get low correlation 
include: 

• Textures storing RGBA data. Alpha masks are not usually closely correlated with the color value. 

• Textures storing normal data. The X and Y normal values often change independently. 

ASTC provides a dual-plane mode, which uses two separate weight grids for each texel. A single 
channel can be assigned to a second plane of weights, while the other three use the first plane of 
weights. 
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The use of dual-plane mode can be chosen on a per-block basis, but its use prevents the use of four-
color partitions. This is because there are not enough bits to concurrently store both an extra plane of 
weights and an extra set of color endpoints. 
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6 ASTC benefits 
ASTC offers several advantages over existing texture compression schemes. We will look at these 
advantages in this section of the guide. 

6.1 Adaptive compression 
The first word in the acronym ASTC is adaptive, and after reading this guide it should be clear why. 
Each block always compresses into 128 bits of storage, but the developer can choose from a wide 
range of texel block sizes. The compressor gets a huge amount of latitude to determine how those 
128 bits are used. 

The compressor can trade off the number of bits assigned to colors and weights on a per-block basis 
to get the best image quality possible.  

Factors that affect the number of bits assigned to colors include: 

• the number of partitions 

• the endpoint mode 

• the stored quantization level 

Factors that affect the number of bits assigned to weights include: 

• the number of weights per block 

• the use of dual-plane 

• the stored quantization level 

6.2 Range of supported formats 
The compression scheme that ASTC uses effectively compresses arbitrary sequences of floating-
point numbers, with a flexible number of channels, across any of the supported block sizes. There is no 
real notion of color format in the compression scheme, beyond the color endpoint mode selection. 
However, a sensible compressor would use some format-specific heuristics to drive an efficient state-
space search. 

The orthogonal encoding design allows ASTC to provide complete coverage of our desirable format 
matrix, across a wide range of bit rates, as shown in the Block sizes table. 

This wide range of supported formats and bit rates means that content creators can use ASTC to 
compress almost any asset to some degree. You can make appropriate bit rate choices based on 
quality needs rather than format constraints. 
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6.3 Image quality 
The high level of flexibility ASTC provides does not mean that image quality is compromised. On the 
contrary, an ASTC compressor is not forced to spend bits on things that do not improve image quality. 
This is made possible by the high packing efficiency allowed by BISE encoding, and the ability to 
dynamically choose where to spend encoding space on a per-block basis. 

This dynamic compression efficiency results in significant improvements in image quality compared to 
older texture formats, despite ASTC handling a much wider range of options. Comparisons with older 
formats give the following results: 

• ASTC at 2 bpt outperforms PVRTC at 2 bpt by ~2.0dB. 

• ASTC at 3.56 bpt outperforms PVRTC and BC1 at 4 bpt by ~1.5dB, and ETC2 by ~0.7dB, despite 
a 10% bit rate disadvantage. 

• ASTC at 8 bpt for LDR formats is comparable in quality to BC7 at 8 bpt. 

• ASTC at 8 bpt for HDR formats is comparable in quality to BC6H at 8 bpt. 

For more information about this data, see ASTC: The Future of Texture Compression. 

Differences as small as 0.25dB are visible to the human eye. Remember that dB uses a logarithmic 
scale, so these results are significant image quality improvements. 

6.4 3D compression 
The techniques in ASTC which underpin the format generalize to compressing volumetric texture 
data without needing very much extra decompression hardware. 

ASTC optionally supports compression of 3D textures, which is a unique feature not found in any 
earlier format, at the bit rates shown in the following table: 

Table 6-1 ASTC 3D block sizes 

Block footprint Bits per texel 

3x3x3 4.74 

4x3x3 3.56 

4x4x3 2.67 

4x4x4 2.00 

5x4x4 1.60 

5x5x4 1.28 

5x5x5 1.02 

6x5x5 0.85 

6x6x5 0.71 

6x6x6 0.59 

https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/ASTC-GDC2013.pdf?revision=8ac69b7a-49b5-452f-a0f8-bc5e75964766
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7 ASTC compression tools 
Several different tools are available to help developers use the ASTC format to compress their 
texture images. 

These tools include: 

• Arm ASTC Encoder 

• Arm Mali Texture Compression Tool 

• Intel Fast ISPC Texture Compressor 

• AMD Compressonator 

7.1 Arm ASTC Encoder 
The Arm ASTC Encoder (astcenc) is an open-source command-line tool for compressing and 
decompressing ASTC textures. The latest version, at the time of writing, is version 2.0. 

Arm ASTC Encoder supports compression of the following formats into ASTC format output images: 

• Low Dynamic Range image formats: BMP, JPEG, PNG, and TGA 

• High Dynamic Range image formats: EXR and HDR 

• DDS and KTX container formats, though only a subset of format features is supported. 

Compressed outputs can be written into a KTX container, or a simple .astc wrapper. 

The astcenc application provides a full list of available command-line arguments. Use the -help 
option, shown in the following code, to see extensive help information, including usage instructions 
and details of all available command-line options: 
astcenc -help  

7.1.1 Compression 

Compress an image using the -cl, -cs, -ch, and -cH modes. For example, the following command 
compresses example.png using the LDR color profile and a 6x6 block footprint (3.55 bits/pixel): 
astcenc -cl example.png example.astc 6x6 -medium 

The -medium quality preset gives a reasonable image quality for a relatively fast compression speed. 
The output is stored to a linear color space compressed image example.astc. 

The available modes are: 

• -cl use the linear LDR color profile 

• -cs use the sRGB LDR color profile 

• -ch use the HDR color profile, tuned for HDR RGB and LDR A 

• -cH use the HDR color profile, tuned for HDR RGBA 

https://github.com/ARM-software/astc-encoder
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The available search presets are, in order of increasing quality and reducing compression speed: 

• -fast 

• -medium 

• -thorough 

• -exhaustive 

The higher quality searches give diminishing quality improvements and increasingly long compression 
times. For most uses we would recommend starting with -medium and only moving to -thorough 
for images with insufficient quality. 

There are many power-user options to control the compressor heuristics. Run astcenc --help 
for more details. 

7.1.2 Decompression 

Decompress an image using the -dl, -ds, -dh, and -dH modes. For example, the following command 
decompresses example.astc using the full HDR feature profile, storing the decompressed output 
to example.tga: 
astcenc -dh example.astc example.tga 

The available modes are: 

• -dl use the linear LDR color profile 

• -ds use the sRGB LDR color profile 

• -dh and -dH use the HDR color profile 

7.1.3 Measuring image quality 

Review the compression quality using the -tl, -ts, -th, and -tH modes. For example: 
astcenc -tl example.png example.tga 5x5 -thorough 

This command is equivalent to using the LDR color profile and a 5x5 block size to compress 
example.png, using the -thorough quality preset, and then immediately decompressing the 
image and saving the result to example.tga. This process can be used to enable a visual inspection 
of the compressed image quality. In addition, this mode also prints out some image quality metrics to 
the console. 

The available modes are: 

• -tl use the linear LDR color profile 

• -ts use the sRGB LDR color profile 

• -th use the HDR color profile, tuned for HDR RGB and LDR A 

• -tH use the HDR color profile, tuned for HDR RGBA 
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7.1.4 Compressing normal maps 

The astcenc compressor has a special compression mode for normal maps, as their compression 
goals are quite different to color data. The normal map mode is enabled by specifying the -normal 
command line option. This has two effects: 

• The normal data is assumed to be unit length and packed into four channels as "x x x y". This allows 
the compressor to store only two values per endpoint, which frees up a significant amount of 
bitrate which can be used elsewhere. 

• The compressor optimizes for the angular error of the normal vector instead of absolute color 
channel error, which improves quality of the normal data even if data looks a little worse when 
viewed as a color image. 

The -perceptual option can also be specified, which changes the compressor to optimize for 
perceptual quality rather than direct PSNR. The main objective of this for normal maps is to reduce 
the variability in the introduced errors, smoothing out the direction changes which can be badly 
amplified by specular lighting computations. 

As these normal maps only store two components, the Z component of the normal must be 
reconstructed in shader code based on the knowledge that the vector is unit length. The GLSL code 
for reconstruction of the Z value is: 
vec3 normal; 

normal.xy = texture(...).ga; 

normal.z = sqrt(1 - dot(normal.xy, normal.xy)); 

The following image shows the difference between compressing for three channel color (left), -
normal (middle), and -normal -perceptual (right): 

 

7.1.5 Compressing mask maps 

The -mask option specifies that the input texture has entirely unrelated content in each channel. This 
option tells astcenc that it is undesirable for errors in one channel to affect other channels. 

The following image shows an example of a bitmap font: 
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The red channel represents the characters, the blue channel is a rear glow, and the green channel is a 
drop shadow.  

The left image is the uncompressed data. The middle image is compressed with default settings, and 
the right image uses the -mask argument. 

7.1.6 Compressing 3D textures 

To compress a volumetric 3D texture, specify the -array <size> option, where <size> is the Z 
dimension of the texture. 

When the -array argument is specified, the input filename is interpreted as a prefix. The actual 
input files are named with the specified prefix plus _0, _1, and so on, up to <size>-1. 

For example, the following command loads files named slice_0.png, slice_1.png, 
slice_2.png, and slice_3.png: 
astcenc -c slice.png slice.astc 4x4x4 -array 4 -medium 

7.2 Arm Mali Texture Compression Tool 
Arm Mali Texture Compression Tool is a GUI application for exploring texture compression and 
visualizing the results, supporting ASTC, ETC, and ETC2. It is no longer under active development, 
and so does not support the latest astcenc command-line tool, but it is still a useful tool for 
experimentation and visualization. The following image shows the Arm Mali Texture Compression 
Tool: 

https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
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The following image shows the Compression options dialog. This dialog lets you select a quality preset 
(Compression mode) and other settings depending on texture usage: 
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7.3 Intel ISPC Texture Compressor 
The Intel ISPC Texture Compressor is a compression library developed by Intel, supporting multiple 
texture formats include ASTC. It uses the Intel ISPC (Implicit SPMD Program Compiler) compiler to 
parallelize key parts of the compressor implementation for the target CPU SIMD instruction set. 
The ASTC support in the tool only supports the 2D LDR profile and block sizes up to 8x8. It has image quality that is similar 
to astcenc -fast for photographic imagery, but can be up to three times faster at compressing.  Its quality is measurably 
worse than astcenc -fast for non-photographic imagery, such as normal maps, mask maps, or cartoon-like color data. 

7.4 AMD Compressonator 
AMD Compressonator is a set of SDK, command-line, and GUI tools. Compressonator supports many 
texture compression formats and provides useful features like batch processing and texture preview. 

Compressonator has limited support for ASTC, exposing little control over image quality or 
compression options. It has significantly slower compression times than the other tools in this section. 

 

https://github.com/GameTechDev/ISPCTextureCompressor
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8 Using ASTC for game assets 
As a developer, you must consider several things when compressing game assets. These 
considerations depend on how the texture is used, and the required image quality. 

8.1 Choosing a suitable bitrate 
Choosing a higher or a lower bitrate lets you trade image quality against data size to obtain the 
optimum balance for your assets. 

The following image shows how different bit rates affect image quality: 

 

A good practice is to split all your texture assets into quality categories based on their distance to the 
viewer or general visibility and importance. For example, you can split your assets into three 
categories: high, medium, and low. Instead of adjusting the bitrate for each individual texture, 
experiment with a few textures from each category and determine the best bitrate for each category. 
You can then use these bitrates to batch-compress the rest of the textures in each category. 

For the majority of color textures using a block size between 6x6 (3.56bpp) and 8x8 (2bpp) gives an 
acceptable quality with efficient memory size and bandwidth. 

For 2D user interface elements, where image quality can be more important, a smaller block size such 
as 4x4 or 5x5 might be more appropriate.  

Normal maps need a higher bitrate than color data, so we would recommend using the -normal 
mode to only store two components and a 5x5 block size.  
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8.2 sRGB 
ASTC supports non-linear sRGB color space conversion at both compression and decompression 
time. 

To keep images in sRGB color space until the point that they are used: 

1. Compress images in the usual way. 

2. When loading images, use the sRGB texture formats instead of the regular texture formats. 

The sRGB texture formats contain SRGB8_ALPHA8 in the name, for example, 
COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR. There is an sRGB equivalent for every RGBA 
format. 
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9 Using ASTC with graphics APIs 
ASTC support is split into a number of feature profiles that are supported by OpenGL ES, OpenGL, 
and Vulkan, either as part of the core specifications or as extensions. 

The ASTC feature profiles are as follows: 

• 2D for LDR images 

• 2D and sliced 3D for LDR images 

• 2D and sliced 3D for LDR and HDR images 

• 2D, sliced 3D, and volumetric 3D for LDR and HDR images 

The 2D LDR profile is mandatory in OpenGL ES 3.2, and a standardized optional feature for Vulkan. 
This means that the 2D LDR profile is widely supported on contemporary mobile devices. The 2D 
HDR profile is not mandatory, but is widely supported. 

9.1 Khronos OpenGL ES support and extensions 
The LDR profile of ASTC is part of the core API for OpenGL ES 3.2. Support for earlier API versions 
and for the other format features is provided via a number official Khronos extensions: 

• KHR_texture_compression_astc_ldr: 2D for LDR images 

• KHR_texture_compression_astc_sliced_3d: 2D and sliced 3D for LDR images 

• KHR_texture_compression_astc_hdr: 2D and sliced 3D for LDR and HDR images 

There is also an extension that provides the full feature set implied by supporting all three KHR 
extensions, with the addition of the volumetric 3D texture support. This extension provides the 3D 
block sizes, such as 4x4x4, allowing the compressor to exploit coherency across planes in the image to 
improve quality or reduce bitrate: 

• OES_texture_compression_astc: 2D + 3D, LDR + HDR support 

 

There is a distinction between sliced 3D, where each slice can be compressed independently, and 3D 
formats like 4x4x4. OES_texture_compression_astc is the only extension that brings in the 3D 
formats, and is a superset of the KHR extensions. 

9.1.1 Decode mode extensions 

ASTC decompresses texels into fp16 intermediate values, except for sRGB which always 
decompresses into 8-bit UNORM intermediates. For many use cases, this gives more dynamic range 
and precision than required, and can cause a reduction in texturing efficiency due to the larger data 
size. 

  

https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_sliced_3d.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_compression_astc.txt
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The following extensions, supported on recent mobile GPUs, allow applications to reduce the 
intermediate precision to either UNORM8 or RGB9e5: 

• OES_texture_compression_astc_decode_mode: Allow UNORM8 intermediates. 

• OES_texture_compression_astc_decode_mode_rgb9e5: Allow RGB9e5 intermediates. 

UNORM8 is recommended for LDR textures, and RGB9e5 is recommended for HDR textures. 

For more information about using the ASTC decode mode extension to select decoding precision 
when decoding ASTC image blocks, see OpenGL ES SDK for Android: ASTC low precision tutorial. 

9.2 Vulkan support and extensions 
The 2D LDR profile of ASTC is a core feature in Vulkan, but supporting it is optional. Platform support 
can be queried at runtime by testing the textureCompressionASTC_LDR physical device feature. 

The HDR profile is provided by the following extension: 

• VK_EXT_texture_compression_astc_hdr. 

9.2.1 Decode mode extension 

As with OpenGL ES, by default Vulkan implementations are required to decompress non-sRGB ASTC 
data to 16-bit floating point values. However, you can change this behavior and choose lower 
precision using the Vulkan decode mode extension, which covers both LDR and HDR formats: 

• VK_EXT_astc_decode_mode 

 

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_astc_decode_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_astc_decode_mode.txt
https://arm-software.github.io/opengl-es-sdk-for-android/astc_textures_low_precision.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_EXT_texture_compression_astc_hdr.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_EXT_astc_decode_mode.html
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10 Unity and ASTC 
Unity lets you enable ASTC on Android, iOS, tvOS, and WebGL if the hardware supports it. On 
Android, both HDR and LDR profiles are available. 

10.1 Build settings 
Each platform has default texture compression formats. For example, on Android the defaults are 
ETC2 for RGBA textures and ETC for RGB textures. You can change the compression setting in File > 
Build Settings, as you can see here: 

 

The Texture Compression setting is global for all textures. The Don’t override option means the 
default texture compression format is used.  

10.2 Texture-specific settings 
Use the Override for platform section in Texture settings to override the global compression format 
for each texture, as you can see in this screenshot: 
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If you select Best for Compression Quality, the compressor thoroughly chooses the optimum ASTC 
blocks, but at the cost of increased compression time.  

You can specify the size of ASTC blocks by choosing the corresponding Format, as shown in the 
following screenshot: 

 

If Override for platform is disabled, the settings in this section are still useful. You can consult these 
settings to see which format and settings are in use for this specific texture, based on the global 
setting and texture type. 

Import Settings let you specify texture type and alpha channel information. These settings let Unity 
choose appropriate compression settings for the texture, as you can see in the following screenshot: 

 

Make sure you select Normal map if needed. 
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After you apply the texture settings, Texture Preview lets you see the result and the selected 
compression format and memory usage: 

 

10.3 Building for different hardware 
Not every device supports ASTC. If you have chosen a texture format your platform does not support, 
texture data is decompressed at runtime. This does not have a huge impact on loading time because 
Unity uses robust decoders. However, you lose all the other benefits of texture compression like 
lower memory footprint and cache efficiency. 

To avoid this situation, you can build separate APKs for different hardware. For example, ASTC is 
available on devices with OpenGL ES 3. For OpenGL ES 2, you can use ETC. 

For example, the following steps show one of the possible workflows that you can follow to build 
different APKs for different platforms: 

1. Build for OpenGL ES 3 and Vulkan: 

a. Select ASTC in File > Build Settings for Android. 

b. Go to Edit > Project Settings > Player Settings and disable OpenGL ES 2. 

c. Build the APK. 

2. Build for OpenGL ES 2: 

a. Select Don’t override in File > Build Settings for Android. 

b. Ensure that all the texture-specific overrides for the platform are either disabled or use ETC 
format. 

c. Go to Edit > Project Settings > Player Settings and leave only OpenGL ES 2 enabled. 

d. Build the APK. 
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11 Unreal Engine and ASTC 
Unreal Engine supports ASTC for mobile devices and other formats. To see which formats your 
device supports, tap with four fingers when running the game. The Console Window appears, 
showing the available texture formats as shown in the following image: 

 

 

 

 

The bShowConsoleOnFourFingerTap variable controls this behavior. The 
bShowConsoleOnFourFingerTap variable is disabled by default with the Shipping build 
configuration. 

Open the Launch context menu to see the available options for texture compression: 

 

The Multi option compresses textures with all available formats. This option increases package size 
and build time but guarantees that the best available format is chosen at runtime. ASTC can be 
unsupported on some devices, but ETC1 support is guaranteed. 

  

https://docs.unrealengine.com/en-US/API/Runtime/Engine/GameFramework/UInputSettings/index.html
https://docs.unrealengine.com/en-US/API/Runtime/Engine/GameFramework/UInputSettings/index.html
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In Project Settings, you can choose which formats are included in the Multi build variant and set their 
relative priorities, as shown in the following image: 

 

For normal maps, masks, and GUI elements, ensure that you specify the appropriate compression 
settings in the Texture Editor, as you can see here: 
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12 Check your knowledge 
Q: What is the main difference between real-time compression schemes like ASTC and traditional 
compression schemes like JPG and PNG? 

A: Real-time compression schemes like ASTC allow efficient random sampling of elements within a 
larger image. JPG and PNG are only designed to decompress the entire image. 

 

 

Q: ASTC provides a wide choice of bit rates when compressing images. What are the upper and lower 
bounds of this range? 

A: ASTC provides bit rates between 0.89 bits and 8 bits per texel (bpt), corresponding to block sizes 
of 4x4 texels to 12x12 texels. 

 

 

Q: ASTC uses color gradients, or partitions, to assign the color values of each texel. What is the 
maximum number of partitions that a block can define? 

A: ASTC allows a block to define up to four distinct partitions. 

 

 

Q: Which astcenc command-line option would you use to compress an input texture where each 
channel contains entirely unrelated content? 

A: The -mask option. 
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13 Related information 
Here are some resources related to material in this guide: 

• Blog posts: 

o Arm Unveils Details of ASTC Texture Compression at HPG Conference: 

 Part 1   

 Part 2  

o ASTC does it: 

 Part 1: Overview   

 Part 2: How to use it  

o ASTC Texture Compression: Arm Pushes the Envelope in Graphics Technology 

o How low can you go? Building low-power, low-bandwidth Arm Mali GPUs 

• Graphics API ASTC examples 

o ASTC and OpenGL ES SDK example 

o ASTC and Vulkan SDK example 

o OpenGL ES SDK for Android: ASTC low precision tutorial  

• Presentations: 

o ASTC: The Future of Texture Compression  

• Technical documentation: 

o Arm ASTC Encoder    

o Arm Mali Texture Compression Tool    

o Intel Fast ISPC Texture Compressor    

o Khronos OpenGL extensions     

• Video: 

o Get the Most out of Adaptive Scalable Texture Compression 

 

 

 

 

 

 

 

 

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/arm-unveils-details-of-astc-texture-compression-at-hpg-conference---part-1
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/arm-unveils-details-of-astc-texture-compression-at-hpg-conference---part-2
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/astc-does-it
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/astc-does-it---part-ii-how-to-use-it
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/astc-texture-compression-arm-pushes-the-envelope-in-graphics-technology
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus
https://arm-software.github.io/opengl-es-sdk-for-android/astc_textures.html
https://arm-software.github.io/vulkan-sdk/_a_s_t_c.html
https://arm-software.github.io/opengl-es-sdk-for-android/astc_textures_low_precision.html
https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/ASTC-GDC2013.pdf?revision=8ac69b7a-49b5-452f-a0f8-bc5e75964766
https://github.com/ARM-software/astc-encoder
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
https://github.com/GameTechDev/ISPCTextureCompressor
https://www.khronos.org/registry/OpenGL/extensions/
https://www.youtube.com/watch?v=IL9wQSA8VVU
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14 Next steps 
This guide introduced the fundamental principles of what ASTC is, how it evolved, and how to use 
ASTC in your applications. 

The next steps are to start using the ASTC format to compress the texture assets in your own 
projects. 

If you are using a gaming engine to develop your project, you can learn more about using ASTC with 
these resources: 

• Unreal Engine users: Arm Guide for Unreal Engine 4: Optimizing Mobile Gaming Graphics 

• Unity users: Arm Guide for Unity Developers: Optimizing Mobile Gaming Graphics 

Finally, to see a demonstration of the results you can achieve with ASTC, watch the Arm Mali ASTC 
Texture Compression Demo from CES 2014. 

https://developer.arm.com/docs/100959/0101/optimizations-and-optimization-techniques/adaptive-scalable-texture-compression/about-astc
https://developer.arm.com/docs/100140/0402/optimization-lists/gpu-optimizations/astc-texture-compression
https://www.youtube.com/watch?v=jEv-UvNYRpk
https://www.youtube.com/watch?v=jEv-UvNYRpk
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